4.6 Article

MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1

Journal

BONE
Volume 137, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2020.115444

Keywords

Osteoporosis; miRNA; Mesenchymal stem cells; Osteogenesis; Ovariectomized

Funding

  1. National Natural Science Foundation of China [81802148, 81772433]

Ask authors/readers for more resources

Osteoporosis (OP) is a systemic skeletal disorder with the characteristics of bone mass reduction and microarchitecture deterioration, resulting in bone fragility and increased fracture risk. A reduction in the osteoblast-differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered as a basic pathogenesis of osteoporosis. miRNAs play a substantial role in the development and differentiation of BMSCs. In the present study, we found that miR-1-3p was significantly downregulated in the bones of Chinese osteoporotic patients (n = 29). Secreted frizzled-related protein 1 (SFRP1) was predicted as a target gene of miR-1-3p via the TargetScan and PicTar softwares and validated by dual-luciferase reporter assays. The findings revealed that the expression of SFRP1 was inversely correlated with miR-1-3p in osteoporotic patients. We induced mouse MSCs (mMSCs) to osteogenesis or adipogenesis and found that miR-1-3p was upregulated during osteogenesis but downregulated during adipogenesis. The overexpression of miR-1-3p stimulated osteogenesis and inhibited adipogenesis of mMSCs. In addition, ovariectomized (OVX) mice were tested and the function of miR-1-3p in vivo was explored. Immunohistochemistry and histomorphometric assays showed that in vivo inhibition of miR-1-3p increased the expression level of SFRP1 and reduced bone formation and bone mass. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining indicated that the in vivo suppression of miR-1-3p promoted osteoclast activity, suggesting that miR-1-3p may influence bone mass by regulating bone resorption. It can be concluded that miR1-3p plays a pivotal role in the pathogenesis of osteoporosis via targeting SFRP1 and may be a potential therapeutic target for osteoporosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available