4.8 Article

Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 269, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.118821

Keywords

Ammonia electro-oxidation reaction; Platinum; Iridium; Electrocatalyst; Density functional theory calculations

Funding

  1. Hong Kong University of Science and Technology
  2. [NRF-2018R1C1B6004272]

Ask authors/readers for more resources

Ammonia (NH3) electro-oxidation reaction (AOR) is an important reaction in direct NH3 fuel cells, NH3 electrolyzer, and NH3-based electrochemical sensors. However, its slow kinetics and structure-sensitive properties require specific electrocatalyst designs. In this study, Ir-decorated N nanocubes are developed as unique surface engineered model catalysts. For the first time, we find that a trace amount of Ir (less than 2%) could increase the AOR activity of N nanocubes by more than twice. Theoretical simulation results also illustrate that the surfacedecorated Ir could lower the energy barrier in the rate determining *NH formation step on N surfaces, thus increasing activity in accordance with experimental findings. Additionally, Ir and Ni(OH)(2)-decorated N nanocubes can significantly improve the durability. Our findings demonstrate the importance of surface engineering in catalyst synthesis and pave the way of advanced electrocatalyst designs for ammonia oxidation and other catalytic reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available