4.7 Review

3D Graphene Scaffolds for Skeletal Muscle Regeneration: Future Perspectives

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2020.00383

Keywords

graphene; scaffold; skeletal muscle; tissue engineering; implants

Funding

  1. AIRC [23124]
  2. Universita Cattolica del Sacro Cuore

Ask authors/readers for more resources

Although skeletal muscle can regenerate after injury, in chronic damages or in traumatic injuries its endogenous self-regeneration is impaired. Consequently, tissue engineering approaches are promising tools for improving skeletal muscle cells proliferation and engraftment. In the last decade, graphene and its derivates are being explored as novel biomaterials for scaffolds production for skeletal muscle repair. This review describes 3D graphene-based materials that are currently used to generate complex structures able not only to guide cell alignment and fusion but also to stimulate muscle contraction thanks to their electrical conductivity. Graphene is an allotrope of carbon that has indeed unique mechanical, electrical and surface properties and has been functionalized to interact with a wide range of synthetic and natural polymers resembling native musculoskeletal tissue. More importantly, graphene can stimulate stem cell differentiation and has been studied for cardiac, neuronal, bone, skin, adipose, and cartilage tissue regeneration. Here we recapitulate recent findings on 3D scaffolds for skeletal muscle repairing and give some hints for future research in multifunctional graphene implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Reproducibility of Biomolecular Corona Experiments: A Primer for Reliable Results

Francesca Giulimondi, Erica Quagliarini, Luca Digiacomo, Serena Renzi, Valentina Palmieri, Massimiliano Papi, Daniela Pozzi, Giulio Caracciolo

Summary: This article discusses the impact of interoperator variability and the use of automated systems on biomolecular corona studies, and investigates the effects of molecular crowding and washing the pellet during corona isolation in nanoparticle-biofluid incubation. The findings are believed to be important for improving the accuracy of experimental design and reporting.

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION (2023)

Article Materials Science, Textiles

Graphene-Curcumin Coatings Resistant to SARS-CoV-2 and Mycobacteria for the Production of Personal Protective Equipment

Flavio De Maio, Giulia Santarelli, Valentina Palmieri, Giordano Perini, Alessandro Salustri, Ivana Palucci, Giovanni Delli Carpini, Alberto Augello, Maurizio Sanguinetti, Marco De Spirito, Michela Sali, Giovanni Delogu, Massimiliano Papi

Summary: Respiratory tract infections are the leading cause of death from infectious diseases globally, with COVID-19 adding to the burden of existing respiratory tract infections like tuberculosis. Graphene and curcumin can be used to create fabric coatings on cotton and polyester, providing personal protective equipment that is resistant to infectious agents.

JOURNAL OF NATURAL FIBERS (2023)

Article Chemistry, Physical

Graphene oxide-mediated copper reduction allows comparative evaluation of oxygenated reactive residues exposure on the materials surface in a simple one-step method

Valentina Palmieri, Francesco Amato, Andrea Giacomo Marrani, Ginevra Friggeri, Giordano Perini, Alberto Augello, Marco De Spirito, Massimiliano Papi

Summary: Graphene Oxide (GO) is an oxidized form of graphene that contains various oxygen functional groups. The solubility of GO in water makes it an ideal material in the biomedical field, but the synthesis methods used can affect the balance of oxygen groups and the impact on cells. Spectroscopic techniques are commonly used to characterize GO, but they have limitations in indicating its reactivity with polymers or biological media. In this study, a colorimetric method based on GO's reactivity with copper ions was developed to evaluate the oxidation degree and accessibility of polymeric samples. This technique will be crucial for scaffold characterization in tissue engineering and studying interactions between GO-related materials and biological entities.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution

Massimiliano Papi, Marco De Spirito, Valentina Palmieri

Summary: The COVID-19 pandemic has prompted collaboration between nanotechnology scientists, industry stakeholders, and clinicians to find solutions for SARS-CoV-2 infections. Carbon-based materials (CBM) like graphene and carbon nanotubes have shown potential in viral research due to their unique effects on microorganisms and immune interaction. This review explores the interaction of CBM with SARS-CoV-2, including their physical and chemical properties, known interactions with viral components, and potential applications in prevention, treatment, and diagnostics.

CARBON (2023)

Article Nutrition & Dietetics

Putting the Personalized Metabolic Avatar into Production: A Comparison between Deep-Learning and Statistical Models for Weight Prediction

Alessio Abeltino, Giada Bianchetti, Cassandra Serantoni, Alessia Riente, Marco De Spirito, Giuseppe Maulucci

Summary: Nutrition is a crucial aspect of medicine, affecting various health conditions. Digital medicine utilizes digital twins, which are replicas of human physiology, to prevent and treat diseases. This study compared different models for the deployment of Personalized Metabolic Avatars, with GRUs and LSTMs showing the best predictive performance and acceptable computational times. The Transformer model did not significantly improve predictive performance but increased computational time, while the SARIMAX model had the best computational time but worst predictive performance.

NUTRIENTS (2023)

Article Oncology

Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models

Giordano Perini, Valentina Palmieri, Ginevra Friggeri, Alberto Augello, Marco De Spirito, Massimiliano Papi

Summary: Graphene quantum dots (GQDs) are biocompatible nanoparticles with excellent size and photophysical properties, widely used in the biomedical field. Surface-functionalized GQDs enhance membrane fluidity and intracellular uptake, showing a synergistic effect with antitumor drugs at subtherapeutic doses. Combined with chemotherapy, GQDs can significantly enhance the antitumor effect and stimulate the immune system against tumors in a 3D model.

CANCER NANOTECHNOLOGY (2023)

Article Chemistry, Medicinal

Curcumin-Functionalized Graphene Oxide Strongly Prevents Candida parapsilosis Adhesion and Biofilm Formation

Margherita Cacaci, Damiano Squitieri, Valentina Palmieri, Riccardo Torelli, Giordano Perini, Michela Campolo, Maura Di Vito, Massimiliano Papi, Brunella Posteraro, Maurizio Sanguinetti, Francesca Bugli

Summary: The antimicrobial activity of graphene oxide (GO) and curcumin-graphene oxide (GO/CU) against C. parapsilosis was evaluated for the first time. The results showed that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, with a 72% reduction in cell viability and an 85% decrease in extracellular substances (EPS) secretion after 72 hours of incubation.

PHARMACEUTICALS (2023)

Article Multidisciplinary Sciences

Extreme transport of light in spheroids of tumor cells

Davide Pierangeli, Giordano Perini, Valentina Palmieri, Ivana Grecco, Ginevra Friggeri, Marco De Spirito, Massimiliano Papi, Eugenio DelRe, Claudio Conti

Summary: The authors discovered that tumor-cell spheroids exhibit optical rogue waves under randomly modulated laser beam illumination. The intensity of transmitted light follows a Weibull statistical distribution, with extreme events corresponding to localized optical modes propagating within the cell network. These nonlinear optical filaments form high-transmission channels and can be used to achieve controlled temperature increase. This study sheds light on optical propagation in biological aggregates and demonstrates the potential of using rogue waves in biomedical applications.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Unlocking the Stability of Reduced Graphene Oxide Nanosheets in Biological Media via Use of Sodium Ascorbate

Francesco Amato, Giordano Perini, Ginevra Friggeri, Alberto Augello, Alessandro Motta, Leonardo Giaccari, Robertino Zanoni, Marco De Spirito, Valentina Palmieri, Andrea Giacomo Marrani, Massimiliano Papi

Summary: Graphene oxide and reduced graphene oxide are widely used carbon nanomaterials in biomedicine. However, the hydrophobic behavior of reduced graphene oxide limits its stability in biological media. In this study, sodium ascorbate is used as a reducing agent to prepare reduced graphene oxide with improved stability and suitability for applications in cell culture media.

ADVANCED MATERIALS INTERFACES (2023)

Article Chemistry, Analytical

Evaluation of the Chewing Pattern through an Electromyographic Device

Alessia Riente, Alessio Abeltino, Cassandra Serantoni, Giada Bianchetti, Marco De Spirito, Stefano Capezzone, Rosita Esposito, Giuseppe Maulucci

Summary: We developed a non-invasive device that evaluates personalized chewing styles by analyzing various aspects. The device provides valuable insights into personalized chewing profiles and could modify unhealthy chewing habits.

BIOSENSORS-BASEL (2023)

Article Chemistry, Multidisciplinary

Self-assembly of glycoprotein nanostructured filaments for modulating extracellular networks at long range

Roberto Matassa, Marta Gatti, Martina Crociati, Roberto Brunelli, Ezio Battaglione, Massimiliano Papi, Marco De Spirito, Stefania Annarita Nottola, Giuseppe Familiari

Summary: The ability of branched glycoprotein filaments to change their hierarchical organization through external stimuli expands understanding of self-assembling strategies that can rearrange networks. This research focuses on the morpho-structural changes of the zona pellucida and its self-assembled filament networks, revealing controlled levels of structured organizations during different stages of oocyte development. The changes are regulated by the nanostructured polymorphisms of the branched filaments and controlled by self-extension/-contraction/-bending processes.

NANOSCALE (2023)

No Data Available