4.6 Article

Association of Rare PTGIS Variants With Susceptibility and Pulmonary Vascular Response in Patients With Idiopathic Pulmonary Arterial Hypertension

Journal

JAMA CARDIOLOGY
Volume 5, Issue 6, Pages 677-684

Publisher

AMER MEDICAL ASSOC
DOI: 10.1001/jamacardio.2020.0479

Keywords

-

Funding

  1. Beijing Natural Science Foundation [7181009, 7172180]
  2. National Key Research and Development Program of China [2016YFC0901502]
  3. National Natural Science Foundation of China [81630003, 81670052, 81870050]
  4. Drug Innovation Major Project [2018ZX09711001-003-012]
  5. Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences [2016-I2M-1-002, 2016-I2M-4-003, 2017-I2M-3-003, 2017-I2M-1-004, 2017-I2M-2-001]
  6. CAMS Fund for Key Laboratory of Pulmonary Vascular Medicine [2017PT32016]
  7. CAMS Fund for Young Talents of Medical Science [2018RC310007]
  8. Sanming Project of Medicine in Shenzhen [SZSM201502001]

Ask authors/readers for more resources

Question What is the novel susceptibility gene for idiopathic pulmonary arterial hypertension? Findings In this 2-stage genetic association study of 230 patients with idiopathic pulmonary arterial hypertension, heterozygous rare PTGIS variants were first found significantly overrepresented in 6.1%, conferring 7.8 higher odds of pulmonary arterial hypertension. In addition, patients carrying rare PTGIS variants were more responsive to iloprost stimulation than those without such variants. Meaning The rare variants of the PTGIS gene appear to contribute higher susceptibility to idiopathic pulmonary arterial hypertension, and screening of PTGIS variants may help improve personalized treatment of these patients. Importance Idiopathic pulmonary arterial hypertension (IPAH) is a fatal disease with high heritability; however, the bone morphogenetic protein receptor 2 (BMPR2) gene only accounts for 17% of IPAH. The genetic basis of IPAH needs further investigation. Objective To identify novel IPAH susceptibility genes other than BMPR2. Design, Setting, and Participants This 2-stage, case-control genetic association study enrolled 230 patients with IPAH from 2 referral pulmonary hypertension centers in China. Eligible patients had no BMPR2 variants and were compared with 968 healthy control participants. Data were collected from January 1, 2000, to July 31, 2015, and analyzed from August 1, 2015, to May 30, 2018. Exposures PTGIS rare variants. Main Outcomes and Measures Whole-genome sequencing was performed to identify putative IPAH genes in a discovery cohort, with validation in an independent referral cohort. Correlation of genotype and hemodynamic characteristics was then evaluated at baseline and after pulmonary vasodilator testing. Functional assessments were conducted to analyze the effects of identified genetic variants on transcript splicing, enzymatic activity, and endothelial cell phenotypes. Results Among 230 patients with IPAH (164 female [71.3%]; mean [SD] age, 34 [18] years), an enrichment of rare variants in a gene encoding prostacyclin synthase (PTGIS) was identified in the discovery cohort. The association of PTGIS rare variants with IPAH was confirmed in the replication cohort. In the combined data set, PTGIS rare variants were found in 14 of 230 cases (6.1%) and 8 of 968 controls (0.8%) (odds ratio, 7.8; 95% CI, 3.2-18.8; P = 5 x 10(-6), logistic regression). Compared with patients without PTGIS variants, inhaled iloprost induced a more significant decrease of pulmonary vascular resistance (difference in the least square mean, -21.7%; 95% CI, -31.4% to -12.0%; P < .001, linear regression model) and an increase of cardiac index (difference in the least square mean, 18.3%; 95% CI, 8.8%-27.8%; P < .001, linear regression model) in patients with PTGIS variants. The minigene assay indicated that the c.521 + 1G>A variant resulted in aberrant messenger RNA transcripts. The functional studies showed that the 2 missense rare variants (R252Q and A447T) resulted in a decrease in prostacyclin production and increased cell death of pulmonary microvascular endothelial cells. Conclusions and Relevance This study identified 3 rare loss-of-function variants in the PTGIS gene from 2 independent cohorts with IPAH. The genetic variants of PTGIS predispose pulmonary vascular responses to the iloprost stimulation. These findings suggest that PTGIS variants may be involved in the pathogenesis of IPAH. This genetic association study assesses novel susceptibility genes other than BMPR2 in patients with idiopathic pulmonary arterial hypertension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available