4.6 Article

Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column CO2

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JD030528

Keywords

fossil fuel carbon emissions; inverse modeling; satellite measurements

Funding

  1. National Aeronautics and Space Administration (NASA) [NNX15AI42G, NNX15AI41G, NNX15AI40G, 80NSSC19K0092, NNX14AM76G]
  2. National Institute for Standards and Technology (NIST) [70NANB10H245]
  3. National Oceanic and Atmospheric Administration (NOAA) [NA13OAR4310076]
  4. French research program Make Our Planet Great Again
  5. National Science Foundation Graduate Research Fellowship [DGE 1256260]

Ask authors/readers for more resources

Satellite observations of the total column dry-air CO2 (X-CO2) are expected to support the quantification and monitoring of fossil fuel CO2 (ffCO(2)) emissions from urban areas. We evaluate the utility of the Orbiting Carbon Observatory 2 (OCO-2) X-CO2 retrievals to optimize whole-city emissions, using a Bayesian inversion system and high-resolution transport modeling. The uncertainties of constrained emissions related to transport model, satellite measurements, and local biospheric fluxes are quantified. For the first two uncertainty sources, we examine cities of different landscapes: plume city located in relatively flat terrain, represented by Riyadh and Cairo; and basin city located in basin terrain, represented by Los Angeles (LA). The retrieved scaling factors of emissions and their uncertainties show prominent variabilities from track to track, due to the varying meteorological conditions and relative locations of the tracks transecting plumes. To explore the performance of multiple tracks in retrieving emissions, pseudo data experiments are carried out. The estimated least numbers of tracks required to constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) are 8, 5, and 7, respectively. Additionally, to evaluate the impact of biospheric fluxes on derivation of the ffX(CO2) enhancements, we conduct simulations for Pearl River Delta metropolitan area. Significant fractions of local X-CO2 enhancements associated with local biospheric X-CO2 variations are shown, which potentially lead to biased estimates of ffCO(2) emissions. We demonstrate that satellite measurements can be used to improve urban ffCO(2) emissions with a sufficient amount of measurements and appropriate representations of the uncertainty components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available