4.6 Article

Self-Nitrogen-Doped Carbon Nanosheets Modification of Anodes for Improving Microbial Fuel Cells' Performance

Journal

CATALYSTS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/catal10040381

Keywords

microbial fuel cell; dandelion seeds; carbonization; chemical activation; anode modification

Funding

  1. Chinese National Natural Science Foundation Project [51676004]

Ask authors/readers for more resources

Dandelion seeds (DSs) have the advantages of high nitrogen content, low cost and easy availability and thus are ideal carbon precursors for fabricating carbon nanomaterials. Herein, this paper prepared a carbon nanosheet material by one-step carbonizing DSs with KOH activation (self-doped-nitrogen porous carbon nanosheets (N-CNS)) and without KOH activation (unactivated self-doped-nitrogen porous carbon nanosheets (N-UA-CNS)), which could dope nitrogen atoms directly into carbon materials without additional processes. Scanning electron microscopy(SEM) images and X-ray diffraction(XRD) patterns both showed that N-CNS was of macro-porous structure, and beneficial for microorganisms' growth. The Brunauer Emmett Teller(BET) surface area of N-CNS was 2107.5 m(2) g(-1), which was much higher than that of N-UA-CNS. After carbon clothes were modified by the obtained materials, the internal resistance of both N-CNS-modified carbon cloth (N-CNS-CC) and N-UA-CNS-modified carbon cloth (N-UA-CNS-CC) was greatly reduced and was found to be only 2.7 omega and 4.0 omega, respectively which are all significantly smaller than that of blank carbon cloth (65.1 omega). These electrodes were assembled in microbial fuel cells (MFCs) as anode, and the operation experiments showed that the N-CNS modification shortened start-up time, improved output stability and increased maximum output voltage significantly. The maximum power density of N-CNS-CC MFC was 1122.41 mW m(-2) which was 1.3 times of that of N-UA-CNS-CC MFC and 1.6 times of that of CC MFC. The results demonstrated that N-CNS was an ideal modification material for fabricating MFC anodes with simple preparation process and low cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available