4.6 Article

Frequency Response of Induced-Charge Electrophoretic Metallic Janus Particles

Journal

MICROMACHINES
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/mi11030334

Keywords

induced charge electrophoresis (ICEP); Janus particles; optical trapping; phase-sensitive detection; phoretic force spectroscopy; ICEP motility reversal; micro-robotics

Funding

  1. Emulsion Polymers Institute
  2. Department of Physics of Lehigh University

Ask authors/readers for more resources

The ability to manipulate and control active microparticles is essential for designing microrobots for applications. This paper describes the use of electric and magnetic fields to control the direction and speed of induced-charge electrophoresis (ICEP) driven metallic Janus microrobots. A direct current (DC) magnetic field applied in the direction perpendicular to the electric field maintains the linear movement of particles in a 2D plane. Phoretic force spectroscopy (PFS), a phase-sensitive detection method to detect the motions of phoretic particles, is used to characterize the frequency-dependent phoretic mobility and drag coefficient of the phoretic force. When the electric field is scanned over a frequency range of 1 kHz-1 MHz, the Janus particles exhibit an ICEP direction reversal at a crossover frequency at similar to 30 kH., Below this crossover frequency, the particle moves in a direction towards the dielectric side of the particle, and above this frequency, the particle moves towards the metallic side. The ICEP phoretic drag coefficient measured by PFS is found to be similar to that of the Stokes drag. Further investigation is required to study microscopic interpretations of the frequency at which ICEP mobility switched signs and the reason why the magnitudes of the forward and reversed modes of ICEP are so different.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available