4.6 Article

Surface Engineered Hybrid Core-Shell Si-Nanowires for Efficient and Stable Broadband Photodetectors

Journal

ADVANCED OPTICAL MATERIALS
Volume 8, Issue 13, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202000228

Keywords

broadband photodetectors; carbon quantum dots; core-shell heterostructure; detectivity; reduced graphene oxide; responsivity; Si nanowires

Funding

  1. IACS, Kolkata
  2. SERB Project [NPDF/2019/03226, ECR/2018/001491]

Ask authors/readers for more resources

Silicon nanostructures have gained intensive interest to develop broadband photodetectors at a large-scale due to their excellent electronic properties. Herein, Si-nanowires (SiNWs) decorated with reduced graphene oxide:carbon quantum dots (rGO:CQDs) nanocomposite (NC), as core-shell heterojunction building blocks for broadband (ultraviolet (UV)-near infrared (NIR)) photodetectors (PDs), are demonstrated. The SiNWs and CQDs are synthesized by wet-chemical etching and facile pyrolysis methods, respectively. Photogenerated carriers are transported through rGO because of its high electron mobility and favorable band alignment with CQDs and Si. Further, to minimize the recombination of photogenerated carriers, and enhance the response in the visible region, plasmon-enhanced AuCQDs are incorporated in the shell matrix. The optimized heterostructure (rGO:AuCQDs/undoped CQDs/SiNWs) is sensitive to a broad wavelength range covering the UV to NIR (360 to 940 nm) region, manifests the excellent responsivity of 16 A W-1 at 360 nm, detectivity (D*) of 2.2 x 10(13) Jones, and noise equivalent power as low as 2.8 fW Hz(-1/2). The optimized PDs heterostructure demonstrates excellent air-stability after 8 days of illumination without any encapsulation or protective coating. The proposed simple, cost-effective, and Si-process-line compatible fabrication of Si-based PD device structure imposes a great promise for highly efficient and stable advanced futuristic optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available