4.6 Article

The Effect of Sponge City Construction for Reducing Directly Connected Impervious Areas on Hydrological Responses at the Urban Catchment Scale

Journal

WATER
Volume 12, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/w12041163

Keywords

sponge city construction; stormwater management; directly connected impervious area; urban catchment scale

Funding

  1. National Natural Science Foundation of China [41890823]

Ask authors/readers for more resources

Low-impact development (LID) has been widely used at both site-specific and local scales to try and mitigate the impact of urban stormwater runoff caused by increasing impervious urban areas. Recently, the concept of a sponge city was proposed by the Chinese government, which includes LID controls at the source, a pipe drainage system midway, and a drainage system for excess stormwater at the terminal. There is a need to evaluate the effectiveness of sponge city construction at the large urban catchment scale, particularly with different spatial distributions of LIDs that reduce directly connected impervious areas (DCIAs). In this paper, the performances of five design scenarios with different spatial distributions but same sizes of LID controls at the urban catchment scale were analyzed using a geographic information system (GIS) of the United States Environmental Systems Research Institute (ESRI)-based Storm Water Management Model (SWMM) of the United States Environmental Protection Agency (USEPA) and MIKE 11 of Danish Hydraulic Institute (DHI) in Xining City, China. Results confirmed the effectiveness of sponge city construction in reducing the urban stormwater runoff. The hydrological performance reduction was positively correlated and linearly dependent on DCIA reduction. Peak flow reduction was most sensitive to DCIA reduction, followed by runoff volume and peak time. As rainfall intensity increased, the hydrological performance was more sensitive to rainfall intensity than DCIA reduction. Results of this study provide new insights for stormwater managers to implement LID more effectively at the urban catchment scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available