4.6 Article

Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo

Journal

PLOS BIOLOGY
Volume 18, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.3000643

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [MO2211-2, CRC 1080, DE 551/13-1]
  2. Edinger Foundation
  3. National Institutes of Health [RO1 HL122547]

Ask authors/readers for more resources

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dopaminergic (DA) neurons, we show that the transfer of EVs from blood is triggered by neuronal activity in vivo. Importantly, this transfer occurs not only in pathological stimulation but also by neuronal activation caused by the physiological stimulus of novel object placement. This discovery suggests a continuous role of EVs under pathological conditions as well as during routine cognitive tasks in the healthy brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available