4.3 Article

Index Properties, Hydraulic Conductivity and Contaminant-Compatibility of CMC-Treated Sodium Activated Calcium Bentonite

Publisher

MDPI
DOI: 10.3390/ijerph17061863

Keywords

bentonite; carboxymethyl cellulose; chemical compatibility; heavy metal; landfill leachate

Funding

  1. National key research and development program [2018YFC1802300, 2018YFC1803100]
  2. National Natural Science Foundation of China [51908121, 41877248]
  3. Natural Science Foundation of Jiangsu Province [BE2017715]
  4. China Postdoctoral Science Foundation [2018M642143]

Ask authors/readers for more resources

A typical sodium activated calcium bentonite (SACaB) was treated with carboxymethyl cellulose (CMC) polymer, called CMC-treated SACaB (CMC-SACaB), and it was investigated for its hydraulic conductivity and enhanced chemical compatibility. Index property and hydraulic conductivity tests were conducted on CMC-SACaB and SACaB with deionized water (DIW), heavy metals-laden water, and actual landfill leachate. Lead-zinc mixed (Pb-Zn) solution and hexavalent chromium (Cr(VI)) solution were selected as target heavy metals-laden water, and calcium (Ca) solution was tested for comparison purposes. The hydraulic conductivity (kMFL) was determined via the modified fluid loss (MFL) test. Liquid limit and swell index in DIW, heavy metal-laden water, and Ca solution increased with increasing CMC content. CMC treatment effectively decreased the kMFL of SACaB when exposed to Pb-Zn solutions with a metal concentration of 1 to 20 mmol/L and landfill leachate. An insignificant change in kMFL of CMC-SACaB occurred with exposure to Pb-Zn solutions with metal concentrations of 1 to 10 mmol/L, Cr(VI) and Ca solutions with metal concentration of 1 to 20 mmol/L, and landfill leachate. A slight increase in kMFL of CMC-SACaB was observed when Pb-Zn concentration increased to 20 mmol/L, and such an increment was more noticeable when the CMC content was lower than 10%. In the DIW, the measured kMFL values of CMC-SACaB and SACaB with a given range of void ratio were consistent with those obtained from the flexible-wall permeameter test.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available