4.7 Article

Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-64079-0

Keywords

-

Ask authors/readers for more resources

The objective of this work is to study the peculiarities of structural organization, morphology, thermomechanical, electrical and antimicrobial properties of nanocomposites based on pectin-polyethyleneimine interpolyelectrolyte complexes and silver nanoparticles in dependence on the type of reducing agent being applied for chemical reduction of silver ions in the interpolyelectrolyte-metal complexes. The average size of Ag nanoparticles is shown to be increased with decreasing of the activity of reducing agent (E-0) and equals to 3.8nm, 4.3nm, and 15.8nm, respectively, when engaging sodium borohydride (-1.24V), hydrazine (-1.15V) and ascorbic acid (-0.35V). Moreover, it was found that the crystallite size of Ag nanoparticles also had the smallest value for nanocomposites obtained involving NaBH4 as reducing agent. Ag-containing nanocomposites prepared by reduction of silver ions in interpolyelectrolyte-metal complexes while applying a range of reducing agents are characterized by different electrical properties and polymer matrix' glass transition temperature. The influence of silver nanoparticles' size incorporated in the polymer matrix on the antimicrobial activity of nanocomposites has been established. The inhibition zone diameter of Staphylococcus aureus and Escherichia coli was higher for nanocomposites obtained using sodium borohydride and hydrazine compared to nanocomposites where ascorbic acid was used as the reducing agent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available