4.3 Article

Tidal Marsh Restoration at Poplar Island I: Transformation of Estuarine Sediments into Marsh Soils

Journal

WETLANDS
Volume 40, Issue 6, Pages 1673-1686

Publisher

SPRINGER
DOI: 10.1007/s13157-020-01294-5

Keywords

Wetland restoration; Wetland biogeochemistry; Dredged materials; Sediment biogeochemistry; Nutrients

Funding

  1. Maryland Department of Transportation Maryland Port Administration

Ask authors/readers for more resources

Dredged materials from navigation channel maintenance represent a potentially valuable resource for wetland creation and restoration. In the northern Chesapeake Bay, fine-grained sediments from Baltimore Harbor approach channels are transported by barge southward for creation of wetlands on the site of an eroded island. High concentrations of ammonium, soluble reactive phosphorus, dissolved iron, and iron sulfide minerals in channel deposits are altered by the transport and drying of these materials prior to wetland development. The oxidation of iron sulfide minerals results in low pH, with the initiation of tidal inundation removing sulfuric acid from near-surface soil horizons and moderating the soil pH. Despite the loss of ammonium during dewatering and soil processing, the resultant soils retained high concentrations of dissolved and adsorbed ammonium. Iron-associated inorganic phosphorus represented a large pool of potentially labile phosphorus and along with the high ammonium, resulted in high nutrient concentrations for plant growth. Combined with results on plant growth presented elsewhere, these data suggest that fine-grained dredged materials from non-contaminated environments are well suited for the creation of tidal wetlands after placement and seasoning 1-2 years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available