4.7 Article

Comparison of sewage sludge mono-incinerators: Mass balance and distribution of heavy metals in step grate and fluidized bed incinerators

Journal

WASTE MANAGEMENT
Volume 105, Issue -, Pages 575-585

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.02.044

Keywords

Sewage sludge; Incineration; Heavy metals; Mass balance; Distribution; Enrichment factor

Funding

  1. Japanese Government (Monbukagakusyo: MEXT)

Ask authors/readers for more resources

We investigated the distribution of 18 elements including non-volatiles (Al, P, Ca, Fe, Mg, K, Mn, Cu, Na, Cr, and Ni), semi-volatiles (Zn, Pb, Ag, As, and Cd), and volatiles (Hg and S) and compared their behaviors in two types of full-scale sewage sludge mono-incinerators, namely, a step-grate stoker (GS) and two fluidized bed incinerators (F-types), with the same feed sludge. Most of the non-volatile elements were enriched five-fold in all incinerated sewage sludge ash (ISSA), while the volatile S and Hg were barely enriched in ash due to the combustion components generated in the gas phase. While the semivolatile elements were also enriched five-fold in the F-types, a different enrichment behavior was observed in the GS. Boiler and multi-cyclone dust in the GS showed higher enrichments of Pb and Cd compared to ash due to the combined effects of lower temperature and smaller particle size. Compared to the F-types, the GS generated ashes with lower toxicity as the major component (99.7%) and hazardous dust as the minor component. In the future, more attention should be paid to grate stokers in terms of recycling ISSA. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available