4.4 Article

Theoretical study of mechanical, thermal and optical properties of a newly predicted tetragonal NaGaS2

Journal

SOLID STATE COMMUNICATIONS
Volume 312, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ssc.2020.113872

Keywords

Tetragonal NaGaS2; DFT; Wide band gap; Optoelectronic materials

Funding

  1. [ZRCPY201915]

Ask authors/readers for more resources

The mechanical, thermal and optical properties of newly predicted tetragonal NaGaS2 are reported by first-principle DFT calculations. In order to prove the reliability of the calculation method, we also calculated these properties of AgGaS2. The obtained values of AgGaS2 are in good accord with the existing experimental and theoretical data. The analysis of the elastic constants and modulus, anisotropy factors and the linear compressibilities indicates NaGaS2 crystal, having the stable mechanical structure, are the anisotropic material, and its ability to resist the compression is stronger than the shape change. The calculation of thermal property reflects a fact that NaGaS2 is a dynamically stable material, which is more suitable to be used as thermal insulating materials. Furthermore, the study on electronic structures and optical property shows that NaGaS2 is a wide band gap semiconductor material, and it is a promising candidate for optoelectronic materials in the ultraviolet energy region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Physics, Condensed Matter

Enhancing the efficiency of SnS-based solar cells using a GLAD technique and CZTSSe layer

Shivani Gohri, Jaya Madan, Rahul Pandey

Summary: This study improves the efficiency of SnS-based solar cells by implementing the glancing angle deposition approach and introducing a CZTSSe layer. The findings offer valuable insights for enhancing the design of SnS-based solar cells and making them more efficient.

SOLID STATE COMMUNICATIONS (2024)

Article Physics, Condensed Matter

Lattice thermal conductivity and thermoelectric properties of two-dimensional honeycomb monolayer of CdO

Mahboubeh Yeganeh, Davoud Vahedi Fakhrabad

Summary: The lattice thermal conductivity of CdO monolayer was investigated, and it was found to be lower than that of bulk CdO due to the lower phonon lifetime and phonon group velocity. As a result, the monolayer exhibits higher thermoelectric efficiency compared to the bulk counterpart.

SOLID STATE COMMUNICATIONS (2024)

Article Physics, Condensed Matter

Unified EOS incorporating the finite strain theory for explaining thermo elastic properties of high temperature superconductors, nanomaterials and bulk metallic glasses

Shivam Srivastava, Prachi Singh, Anjani K. Pandey, Chandra K. Dixit

Summary: In this research paper, a novel equation of state (EOS) based on finite strain theories is proposed for predicting the thermo elastic properties of various materials. Extensive analysis and comparison with existing models and experimental data demonstrate the validity and effectiveness of the proposed EOS in capturing the unique thermodynamic behavior of nanomaterials, bulk metallic glasses, and superconductors. This research is of great importance in the fields of materials science, nanotechnology, and condensed matter physics.

SOLID STATE COMMUNICATIONS (2024)

Article Physics, Condensed Matter

Isostructural phase transition in Tb2Ti2O7 under pressure and temperature: Insights from synchrotron X-ray diffraction

Subrata Das, Sanjoy Kr Mahatha, Konstantin Glazyrin, R. Ganesan, Suja Elizabeth, Tirthankar Chakraborty

Summary: In this study, we investigated the structural evolution of Tb2Ti2O7 under external pressure and temperature, and confirmed the occurrence of an isostructural phase transition beyond 10 GPa pressure. This transition leads to changes in lattice parameters and mechanical properties, which can be understood in terms of localized rearrangement of atoms.

SOLID STATE COMMUNICATIONS (2024)

Article Physics, Condensed Matter

Superconductivity of metallic graphene

Hamze Mousavi

Summary: It has been found that undoped graphene sheet has zero states at the Fermi energy level, making it difficult for Cooper pairing to occur in the superconductive state. However, T-graphene, with physical properties similar to graphene, exhibits metallic behavior and has available electron states near the Fermi level. The gap equation for the s-wave superconductive state is derived based on the attractive Hubbard model and the Bogoliubov de Gennes equation for this two-dimensional metallic system. It is found that a nonzero critical temperature, τ, exists for different levels of electron-electron interaction, ǫ. τ has higher values when the system has electronic half band-filling, but decreases when the system does not have half band-filling. However, τ vanishes when ǫ becomes small enough near the band edges.

SOLID STATE COMMUNICATIONS (2024)