4.7 Article

Strongly enhanced upconversion in trivalent erbium ions by tailored gold nanostructures: Toward high-efficient silicon-based photovoltaics

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 208, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2020.110406

Keywords

Upconversion of sub-band gap photons; High-efficient photovoltaics; Photonic enhancement; Topology optimization

Funding

  1. Innovation Fund Denmark under the project SunTune

Ask authors/readers for more resources

Upconversion of sub-band-gap photons constitutes a promising way for improving the efficiency of silicon-based solar cells beyond the Shockley-Queisser limit. 1500 nm to 980 nm upconversion by trivalent erbium ions is well-suited for this purpose, but the small absorption cross section hinders real-world applications. We employ tailored gold nanostructures to vastly improve the upconversion efficiency in erbium-doped TiO2 thin films. The nanostructures are found using topology optimization and parameter optimization and fabricated by electron beam lithography. In qualitative agreement with a theoretical model, the samples show substantial electric-field enhancements inside the upconverting films for excitation at 1500 nm for both s- and p-polarization under a wide range of incidence angles and excitation intensities. An unprecedented upconversion enhancement of 913 +/- 51 is observed at 1.7W cm(-2). We derive a semi-empirical expression for the photonically enhanced upconversion efficiency, valid for all excitation intensities. This allows us to determine the upconversion properties needed to achieve significant improvements in real-world solar-cell devices through photonic-enhanced upconversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Non-Hierarchical Architected Materials with Extreme Stiffness and Strength

Fengwen Wang, Marie Brons, Ole Sigmund

Summary: Stretch-dominated truss and plate microstructures are competing in the development of highly rigid and strong architected materials. Although closed-cell isotropic plate microstructures meet theoretical upper bounds on stiffness, they have low buckling strength, whereas open-cell truss microstructures have high buckling strength but reduced stiffness. Hollow truss lattice and hierarchical microstructures outperform both in terms of buckling strength, but are challenging to build. In this study, single-scale non-hierarchical microstructures are designed, built, and tested, surpassing the buckling strength of hollow truss lattice and plate microstructures. The microstructures are realized with 3D printing and both experiments and numerical modeling validate the theoretical predictions.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Optics

Impact of figures of merit in photonic inverse design

Rasmus E. Christiansen, Philip Trost Kristensen, Jesper Mork, Ole Sigmund

Summary: Using topology optimization, compact wavelength-sized devices are designed to study the effect of optimizing geometries for enhancing different optical processes. The findings show that different field distributions lead to maximization of different processes, emphasizing the importance of targeting the appropriate metric when designing photonic components for optimal performance.

OPTICS EXPRESS (2023)

Article Engineering, Multidisciplinary

Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading

Yafeng Wang, Ole Sigmund

Summary: This study aims to optimize the buckling capacity of mechanical structures subjected to thermal and mechanical loading through a density-based topology optimization scheme. By decoupling the effects of mechanical and thermal loadings, the buckling aspects induced by each loading can be separately analyzed and optimized. The study also employs a multi-material topology optimization scheme to optimize the buckling capacity of active structures and prestressed structures.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Simple and efficient GPU accelerated topology optimisation: Codes and applications

Erik A. Traff, Anton Rydahl, Sven Karlsson, Ole Sigmund, Niels Aage

Summary: This work presents three-dimensional linear elastic compliance minimisation using topology optimisation implementations accelerated by Graphics Processing Units (GPUs). Two GPU-accelerated implementations, based on OpenMP 4.5 and the Futhark language, are presented. Both implementations utilize high level GPU frameworks, avoiding the need for expertise knowledge of CUDA or OpenCL. Additionally, a vectorised and multi-threaded CPU code is included for reference. The results show that the GPU accelerated codes are able to solve large-scale topology optimisation problems faster than the reference CPU code, and they can also handle nonlinear problems.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

Topology optimization of multiscale structures considering local and global buckling response

Christoffer Fyllgraf Christensen, Fengwen Wang, Ole Sigmund

Summary: Topology optimization has been used for maximizing stiffness or minimizing compliance in multiscale structures. This study focuses on optimizing buckling stability of multiscale structures with isotropic porous infill, by considering both local and global instability.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

A strategy for avoiding spurious localized buckling modes in topology optimization

Federico Ferrari, Ole Sigmund

Summary: In this study, a strategy is introduced to prevent the occurrence of spurious modes in the spectrum computed by linearized buckling analysis in the context of topology optimization. Spurious buckling modes commonly appear in low density regions, but this study also highlights the occurrence of localized modes in solid areas due to the limitations of linearized buckling analysis. The proposed remedy involves using filtering and erosion operations on the stress field, helping to mitigate the occurrence of spurious modes and improve the optimization process towards high performance designs.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING (2023)

Article Optics

New perspectives on traps and radiative recombination centers for optically stimulated luminescence in LiF:Mg,Cu,P

Jacob S. Nyemann, Camilla L. Nielsen, Rosana M. Turtos, Brian Julsgaard, Ludvig P. Muren, Peter Balling

Summary: LiF:Mg,Cu,P (MCP) has high thermoluminescence (TL) sensitivity and is widely used for TL dosimetry. Recent studies have focused on its optically stimulated luminescence (OSL) properties for 2D and 3D dosimetry. The spectrally resolved OSL emission of MCP was measured and two recombination centers with emission at 355 nm and 394 nm were identified. Two dominating types of OSL traps were found with indicative values for their photoexcitation cross section.

JOURNAL OF LUMINESCENCE (2023)

Article Computer Science, Interdisciplinary Applications

Simultaneous shape and topology optimization of wings

Lukas C. Hoghoj, Cian Conlan-Smith, Ole Sigmund, Casper Schousboe Andreasen

Summary: This paper presents a method for simultaneous optimization of the outer shape and internal topology of aircraft wings, with the objective of minimizing drag subject to lift and compliance constraints for multiple load cases. The physics are evaluated by the means of a source-doublet panel method for the aerodynamic response and linear elastic finite elements for the structural response, which are one-way coupled. Wings of small fixed-wing airplanes both with and without a stiffening strut are optimized. The resulting wings show internal topologies with struts and wall-truss combinations, depending on the design freedom of the shape optimization. The lift distributions of the optimized wings show patterns like the ones obtained when performing optimization of wing shapes with constraints on the bending moment at the root.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2023)

Article Multidisciplinary Sciences

Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible

Corey A. Richards, Christian R. Ocier, Dajie Xie, Haibo Gao, Taylor Robertson, Lynford L. Goddard, Rasmus E. Christiansen, David G. Cahill, Paul V. Braun

Summary: In this study, the authors used subsurface 3D printing to fabricate compact and high-performance achromatic imaging micro-optics. These micro-optics, which integrate refractive and diffractive elements, demonstrate high focusing efficiencies, high numerical apertures, and low chromatic focusing errors, offering a promising pathway towards achromatic micro-optical systems.

NATURE COMMUNICATIONS (2023)

Article Mathematics, Interdisciplinary Applications

Topology optimization of self-contacting structures

Andreas Henrik Frederiksen, Ole Sigmund, Konstantinos Poulios

Summary: This paper addresses the limitations of incorporating contact in topology optimization and proposes a new method for topology optimization problems with internal contact. The method ensures stability and robustness of the optimized designs by introducing a tangent stiffness requirement and penalizing small features. The examples demonstrate the effectiveness of the method in topology optimization under large deformations.

COMPUTATIONAL MECHANICS (2023)

Article Engineering, Multidisciplinary

Programming and physical realization of extreme three-dimensional responses of metastructures under large deformations

Weichen Li, Yingqi Jia, Fengwen Wang, Ole Sigmund, Xiaojia Shelly Zhang

Summary: This study systematically investigates several precisely programmed nonlinear extreme responses in 3D structures under finite deformations through multimaterial inverse design by topology optimization. Unique complex 3D geometries with deformation capabilities are discovered and utilized to deliver the target responses. The optimized structure is accurately fabricated through a proposed hybrid fabrication method and the design's programmed behavior is validated.

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE (2023)

Article Optics

Flow synthesized LiBaF3 nanocubes as a promising optically stimulated luminescence phosphor

Camilla Lonborg Nielsen, Rosana Martinez Turtos, Mads Lykke Jensen, Brian Julsgaard, Peter Balling

Summary: In this study, phase-pure LiBaF3 nanoparticles were successfully synthesized, exhibiting radioluminescence with three peaks corresponding to different luminescent processes. Optically- and thermally stimulated luminescence showed a common luminescent pathway. The OSL signal was linearly related to dose up to-1 kGy. The TL glow peak at around 120 degrees C was depleted by optical stimulation, and the OSL signal disappeared following a TL readout. The thermal trap depth was found to be-1 eV. The high OSL light yield and reasonable fading make the nanoparticles an excellent candidate for OSL dosimetry.

JOURNAL OF LUMINESCENCE (2023)

Article Radiology, Nuclear Medicine & Medical Imaging

High-resolution three-dimensional dosimetry in clinically relevant volumes utilizing optically stimulated luminescence

Mads L. Jensen, Brian Julsgaard, Rosana M. Turtos, Peter S. Skyt, Morten B. Jensen, Ludvig P. Muren, Peter Balling

Summary: A novel optically-stimulated-luminescence (OSL)-based 3D dosimetry system capable of measuring radiation doses in clinically relevant volumes was demonstrated.

MEDICAL PHYSICS (2023)

Article Materials Science, Multidisciplinary

The origin of room-temperature self-trapped-exciton emission in LiF nanoparticles

Camilla L. Nielsen, Pavao Andricevic, Brian Julsgaard, Mayank Jain, Peter Balling, Rosana M. Turtos

Summary: This study extends the understanding of energy-trapping mechanisms in wide-band-gap inorganic crystals by using nanoparticles and investigates the effects of doping and surface properties on luminescence performance.

PHYSICAL REVIEW MATERIALS (2023)

Article Engineering, Multidisciplinary

Phasor noise for dehomogenisation in 2D multiscale topology optimisation

Rebekka Woldseth, J. Andreas Baerentzen, Ole Sigmund

Summary: This paper presents an alternative approach to dehomogenisation of elastic Rank-N laminate structures based on the computer graphics discipline of phasor noise. The proposed methodology offers an improvement of existing methods, where high-quality single-scale designs can be obtained efficiently without the utilisation of any least-squares problem or pre-trained models. Numerical tests verifies the performance of the proposed methodology compared to state-of-the-art alternatives, and the dehomogenised designs achieve structural performance within a few percentages of the optimised homogenised solution.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Energy & Fuels

Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss

Shahriyar Safat Dipta, Md Habibur Rahaman, Walia Binte Tarique, Ashraful Hossain Howlader, Ayush Pratik, John A. Stride, Ashraf Uddin

Summary: Implementing a double-sided passivation approach can enhance the performance of n-i-p structured PSCs and improve the stability and photovoltaic properties of the cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Paste-based silver reduction for iTOPCon rear side metallization

Daniel Ourinson, Andreas Brand, Andreas Lorenz, Marwan Dhamrin, Sebastian Tepner, Michael Linse, Nathalie Goettlicher, Kosuke Tsuji, Jonas D. Huyeng, Florian Clement

Summary: This work presents two approaches to reduce the amount of silver on the rear side of M2-sized industrial iTOPCon solar cells. The Cu-based approach shows promise with similar power conversion efficiency compared to the conventional approach, while the Al-based approach exhibits some limitations but demonstrates the potential of such type of contact for iTOPCon solar cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Screen printable copper pastes for silicon solar cells

Abasifreke Ebong, Donald Intal, Sandra Huneycutt, Thad Druffel, Ruvini Dharmadasa, Kevin Elmer, Apolo Nambo

Summary: This study demonstrates the successful metallization of a PERC silicon solar cell using screen-printable copper (Cu) paste. The Cu paste contains antioxidant additives and diffusion inhibitors to prevent oxidation and diffusion of Cu. The Cu-printed cells achieved an efficiency of 19% and showed no Cu diffusion after characterization tests. The long-term stability and effectiveness of the Cu diffusion barrier were also confirmed.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Defining specifications for accurate Metal/TCO specific contact resistivity measurements by TLM in silicon heterojunction devices

Senami Zogbo, Wilfried Favre, Olivier Bonino, Marie-Estelle Gueunier-Farret

Summary: Measuring specific contact resistivity (pc) is crucial for interface engineering in high efficiency solar cells. The Transfer Length Method (TLM) is commonly used for evaluating layer sheet resistance (Rsheet) and pc, but it is not suitable for metal/Transparent Conductive Oxide (TCO) interface evaluation in silicon heterojunction (SHJ) cells. This study investigates the parameters that restrict current confinement within the TCO, including mid-gap trap density (Dit) at the a-Si:H/c-Si interface and the activation energy (Ea = Ec - EF) variation of a-Si:H contact layers.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules part I: Cell-ribbon mechanical interaction through the solder

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: The phenomenon of ribbon lengthening in PV modules exposed to thermal cycling is not well explained in the literature. In this study, a three layers model is proposed to explain this effect, and the predictions of the model are validated through finite element method simulations and experiments. The results show that the model predictions are consistent with the indirect measurements, but not with the direct measurements. Additionally, it is inferred that the encapsulant plays a role after the solder failure.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules, Part II: Glass-ribbon mechanical interaction through the encapsulant

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: This study investigates the problematic ribbon lengthening observed in PV modules exposed to high amplitude thermal cycling. A simplified system model is proposed and accurate predictions are obtained using the Finite Element Method. The results show that the thickness of the encapsulant has a substantial impact on the lengthening of the ribbons.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Gallium nanoparticles as antireflection structures on III-V solar cells

S. Catalan-Gomez, E. Martinez Castellano, M. Schwarz, M. Montes Bajo, L. Dorado Vargas, A. Gonzalo, A. Redondo-Cubero, A. Gallego Carro, A. Hierro, J. M. Ulloa

Summary: This study investigates the use of core-shell gallium nanoparticles as functional light scatterers on solar cells. By optimizing the nanoparticle size, the short-circuit current of the solar cells is significantly improved. The underlying physical mechanism is studied through optical measurements and simulations, and a method to reduce the plasmonic effect of the nanoparticles is demonstrated.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Highly reflective and passivated ohmic contacts in p-Ge by laser processing of aSiCx:H(i)/Al2O3/aSiC films for thermophotovoltaic applications

M. Gamel, G. Lopez, A. M. Medrano, A. Jimenez, A. Datas, M. Garin, I. Martin

Summary: In this study, a highly reflective ohmic contact to p-type c-Ge material is demonstrated, which can improve the efficiency of thermophotovoltaic devices. The experimental results show that this contact can simultaneously meet the requirements of good back surface passivation, low electrical resistivity, and high reflectivity. Moreover, simulations suggest that implementing these back contacts has the potential to achieve conversion efficiencies comparable to high-efficiency c-Ge TPV cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Improvement on solar selective absorption properties of anodic aluminum oxide photonic crystal films by electrodeposition of silver

Hongyang Wei, Qing Xu, Dongchu Chen, Min Chen, Menglei Chang, Xiufang Ye

Summary: This study prepared solar selective absorption films based on anodic aluminum oxide (AAO) photonic crystals using a unique electrodeposition method. The Co-Ag electrodeposited film exhibited superior solar selective absorption properties and thermal stability.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Optical absorption driven by efficient refraction and light concentration for photovoltaic applications

Ankit Kumar, Ankit Chauhan, Jordi Llobet, Helder Fonseca, Patricia C. Sousa, Carlos Calaza, Gil Shalev

Summary: This study found that decorating subwavelength arrays with SiO2 quasi-nanolenses (qNL arrays) can enhance the absorption of the solar spectrum. Optical absorption mechanisms in qNL arrays were investigated using near-field scanning optical microscopy (NSOM), revealing that the enhancement is a result of the combination of effective antireflection coating, increased optical interactions between adjacent dielectrics for elevated light trapping, and strong light concentration due to the presence of qNLs.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Progress on the reduction of silver consumption in metallization of silicon heterojunction solar cells

S. Pingel, T. Wenzel, N. Goettlicher, M. Linse, L. Folcarelli, J. Schube, S. Hoffmann, S. Tepner, Y. C. Lau, J. Huyeng, A. Lorenz, F. Clement

Summary: This study demonstrates the potential to reduce silver consumption in highly efficient SHJ cells through fine-line screen printing using low temperature paste with various screens. The results show that using finer mesh allows for narrower grid fingers and lower resistance, leading to improved cell efficiency. Simulation results indicate that module wire configuration is crucial for reducing silver consumption.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Efficient-thermal conductivity, storage and application of bionic tree-ring composite phase change materials based on freeze casting

Xibo He, Jun Qiu, Wei Wang, Yicheng Hou, Yong Shuai

Summary: This paper proposes a novel phase change material with high thermal conductivity and stability for fast photo-thermal conversion and storage. The experimental results demonstrate excellent durability and stability of the phase change material, with good performance in thermal conductivity and thermal storage efficiency.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Solar evaporation of liquid marbles with tunable nanowire array

Qingyuan Liu, Lin Wang, Zheng Liu, Guohua Liu

Summary: A new evaporating structure consisting of liquid marble with tunable nanowire array is proposed to enhance solar evaporation. The experiments show that the liquid marble with nanowire array exhibits outstanding evaporation performance, which has significant implications for seawater desalination or wastewater treatment.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Effects of different interface on the stability of hybrid heterojunction solar cells

Hao Liu, Qiming Liu, Jinpei Liu, Yonggang Zhao, Yingjie Yu, Yue An, Ganghui Wei, Yanzheng Li, Yujun Fu, Junshuai Li, Deyan He

Summary: Moisture in the air is identified as the main cause of performance degradation in organic-inorganic hybrid solar cells. Exposure to air leads to the growth of thin oxide layer on the interface and the formation of silver sulfide, increasing the series resistance and decreasing the fill factor, thus degrading the cell performance.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Refractive indices and extinction coefficients of p-type doped Germanium wafers for photovoltaic and thermophotovoltaic devices

E. Blanco, P. Martin, M. Dominguez, P. Fernandez-Palacios, I. Lombardero, C. Sanchez-Perez, I. Garcia, C. Algora, M. Gabas

Summary: This study addresses the lack of optical parameters for p-type Ge wafers by determining the complex refractive indices of commercial Ge wafers with varying doping levels. The obtained data successfully reproduces the critical points associated with interband transitions and absorption features below the bandgap. The refractive indices were validated through experimental measurements and solar cell simulations.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)