4.8 Article

Giant thermopower of ionic gelatin near room temperature

Journal

SCIENCE
Volume 368, Issue 6495, Pages 1091-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aaz5045

Keywords

-

Funding

  1. Center for Mechanical Engineering Research and Education at MIT
  2. Center for Mechanical Engineering Research and Education at SUSTech
  3. Guangdong Innovation Research Team Project [2016ZT06G587, 2017ZT07C062]
  4. Shenzhen Sci-Tech Fund [KYTDPT20181011104007]
  5. Tencent Foundation through the XPLORER PRIZE
  6. Guangdong Provincial Key-Lab Program [2019B030301001]
  7. Shenzhen Municipal Key-Lab Program [ZDSYS20190902092905285]
  8. Shenzhen Pengcheng-Scholarship Program
  9. Ministry of Industry and Information Technology of the People's Republic of China [2016YFB0901600]
  10. Tianjin City Distinguish Young Scholar Fund
  11. National Natural Science Foundation of China [21573117, 11674289]

Ask authors/readers for more resources

Harvesting heat from the environment into electricity has the potential to power Internet-of-things (IoT) sensors, freeing them from cables or batteries and thus making them especially useful for wearable devices. We demonstrate a giant positive thermopower of 17.0 millivolts per degree Kelvin in a flexible, quasi-solid-state, ionic thermoelectric material using synergistic thermodiffusion and thermogalvanic effects. The ionic thermoelectric material is a gelatin matrix modulated with ion providers (KCl, NaCl, and KNO3) for thermodiffusion effect and a redox couple [Fe(CN)(6)(4-)/Fe(CN)(6)(3-)] for thermogalvanic effect. A proof-of-concept wearable device consisting of 25 unipolar elements generated more than 2 volts and a peak power of 5 microwatts using body heat. This ionic gelatin shows promise for environmental heat-to-electric energy conversion using ions as energy carriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available