4.4 Article

The alterations of glutamate transporter 1 and glutamine synthetase in the rat brain of a learned helplessness model of depression

Journal

PSYCHOPHARMACOLOGY
Volume 237, Issue 8, Pages 2547-2553

Publisher

SPRINGER
DOI: 10.1007/s00213-020-05555-3

Keywords

Glutamate transporter-1; Glutamine synthetase; Depression; Learned helplessness; Resilience; Astrocyte

Ask authors/readers for more resources

Background Although glutamate transmission via astrocytes has been proposed to contribute to the pathophysiology of depression, the precise mechanisms are unknown. Herein, we investigated the levels of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) of astrocytes in learned helplessness (LH) rats (an animal model of depression) and non-LH rats (an animal model of resilience). Methods We administered inescapable mild electric shock to rats and then discriminated the LH and non-LH rats by a post-shock test. Almost 55% of the rats acquired LH. We then measured the expressions of GLT-1 and GS in several brain regions of LH and non-LH rats by Western blot analysis. Results The levels of GLT-1 and GS in the CA-1, CA-3, dentate gyrus (DG), medial prefrontal cortex (mPF), and nucleus accumbens (NAc) of the LH group were significantly higher than those of the control group. The GS levels in the amygdala of the LH rats were significantly decreased compared to the controls. There were significant differences in GLT-1 and GS levels between the non-LH and LH rats in the CA-1 and CA-3. Conclusions These results suggest that the LH rats experienced up-regulations of GLT-1 and GS in the CA-1, CA-3, DG, mPF, and NAc and a down-regulation of GS in the amygdala. It is possible that the effects of the GLT-1 and GS levels on astrocytes in the CA-1 and CA-3 are critical for the differentiation of resilience from vulnerability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available