4.8 Article

Limits on gas impermeability of graphene

Journal

NATURE
Volume 579, Issue 7798, Pages 229-+

Publisher

NATURE RESEARCH
DOI: 10.1038/s41586-020-2070-x

Keywords

-

Funding

  1. Lloyd's Register Foundation
  2. European Research Council
  3. Graphene Flagship
  4. Royal Society
  5. National Key R&D Program of China [2018YFA0305800]
  6. Supercomputing Center of Wuhan University
  7. EPSRC [EP/K005014/1] Funding Source: UKRI

Ask authors/readers for more resources

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids(1-10). This conclusion is based on theory(3-8) and supported by experiments(1,9,10) that could not detect gas permeation through micrometre-size membranes within a detection limit of 10(5) to 10(6) atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport(11,12). Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available