4.6 Article

Dual P-Glycoprotein and CA XII Inhibitors: A New Strategy to Reverse the P-gp Mediated Multidrug Resistance (MDR) in Cancer Cells

Journal

MOLECULES
Volume 25, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/molecules25071748

Keywords

MDR reversers; P-gp modulators; CA XII inhibitors; K562; DOX; LoVo; DOX; hybrid compounds; multitarget ligands; dual P-gp; CA XII inhibitory activity; selective chemosensitizers

Funding

  1. University of Florence (Fondo Ricerca Ateneo) [RICATEN17, RICATEN18]

Ask authors/readers for more resources

A new series of N,N-bis(alkanol)amine aryl diesters was synthesized and studied as dual P-glycoprotein (P-gp) and carbonic anhydrase XII inhibitors (CA XII). These hybrids should be able to synergistically overcome P-gp mediated multidrug resistance (MDR) in cancer cells. It was reported that the efflux activity of P-gp could be modulated by CA XII, as the pH reduction caused by CA XII inhibition produces a significant decrease in P-gp ATPase activity. The new compounds reported here feature both P-gp and CA XII binding moieties. These hybrids contain a N,N-bis(alkanol)amine diester scaffold found in P-glycoprotein ligands and a coumarin or benzene sulfonamide moiety to target CA XII. Many compounds displayed a dual activity against P-gp and CA XII being active in the Rhd 123 uptake test on K562/DOX cells and in the hCA XII inhibition test. On LoVo/DOX cells, that overexpress both P-gp and CA XII, some coumarin derivatives showed a high MDR reversal effect in Rhd 123 uptake and doxorubicin cytotoxicity enhancement tests. In particular, compounds 7 and 8 showed higher activity than verapamil and were more potent on LoVo/DOX than on K562/DOX cells overexpressing only P-gp. They can be considered as valuable candidates for selective P-gp/CA XII inhibition in MDR cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available