4.7 Article

Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers

Journal

CHEMICAL GEOLOGY
Volume 440, Issue -, Pages 313-325

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemgeo.2016.07.025

Keywords

Wetland; Acid sulfate soils; Seepage; Greenhouse gas; Stable isotopes

Funding

  1. Australian Research Council [LE120100156, DE140101733, DE150100581]
  2. OCE CSIRO Postgraduate scholarship
  3. Australian Research Council [DE150100581] Funding Source: Australian Research Council

Ask authors/readers for more resources

Many coastal floodplains have been artificially drained for agriculture, altering hydrological connectivity and the delivery of groundwater-derived solutes including carbon dioxide (CO2) and methane (CH4) to surface waters. Here, we investigated the drivers of CO2 and CH4 within the artificial drains.of a coastal floodplain under sugarcane plantation and quantify the contribution of groundwater discharge to CO2 and CH4 dynamics over a flood event (290 mm of rainfall). High temporal resolution, in situ observations of dissolved CO2 and CH4, carbon stable isotopes of CH4 (delta C-13-CH4), and the natural groundwater tracer radon (Rn-222) allowed us to quantify. CO2, CH4 and groundwater dynamics during the rapid recession of a flood over a five day period. Extreme super-saturation of free CO2 ([CO2*]) up to 2,951 mu M (25,480% of atmospheric equilibrium) was driven by large groundwater input into the drains (maximum 87 cm day-(1)), caused by a steep hydraulic head in the adjacent water table. Groundwater input sustained between 95 and 124% of the surface [CO2*] flux during the flood recession by delivering high carbonate alkalinity groundwater (DIC = 10,533 mu M, similar to pH = 7.05) to acidic surface water (pH <4), consequently transforming all groundwater-derived DIC to [CO2*]. In contrast, groundwater was not a major direct driver of CH4 contributing only 14% of total CH4 fluxes. A progressive increase in CH4 concentrations of up to similar to 2400 nM day-(1) occurred as a combination of increased substrate availability delivered by post-flood drainage water and longer residence times, which allowed for a biogenic CH4 signal to develop. The progressive enrichment in delta C-13-CH4 values (- 70%. to-48%.) and increase in CH4 concentrations (46-2460 nM) support coupled production-oxidation, with concentrations and delta C-13 values remaining higher (2,798 nM and-47%.) than pre-flood conditions (534 nM and-55 parts per thousand) three weeks after the flood. Our findings demonstrate how separate processes can drive the aquatic CO2 and CH4 response to a flood event in a drained coastal floodplain, and the key role groundwater had in post-flood [CO2*] evasion to the atmosphere, but not CH4. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available