4.2 Article

QSAR modeling, molecular docking and ADMET/pharmacokinetic studies: a chemometrics approach to search for novel inhibitors of norepinephrine transporter as potent antipsychotic drugs

Journal

JOURNAL OF THE IRANIAN CHEMICAL SOCIETY
Volume 17, Issue 8, Pages 1953-1966

Publisher

SPRINGER
DOI: 10.1007/s13738-020-01902-5

Keywords

NET; Antipsychotic; QSAR; DFT; Drug; Disorders

Ask authors/readers for more resources

Chemometrics study that relates biological activity to physicochemical descriptors of a molecule and the prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties in advance are important steps in drugs discovery. In this study, a chemometrics approach was employed on some molecules (inhibitors) of norepinephrine transporter to assess their inhibitory potencies, interactions with the receptor and predict their ADMET/pharmacokinetic properties for identification of novel antipsychotic drugs. The molecules were optimized by using density functional theory at the basis set of B3LYP/6-31G*. The genetic function algorithm technique was used to generate a statistically significant model with a good correlation coefficientR(Train)(2) = 0.952 Cross-validated coefficientQ(cv)(2) = 0.870, and adjusted squared correlation coefficientR(adj)(2) = 0.898. The molecular docking simulation using a neurotransmitter transporter receptor (PDB Code 2A65) revealed that three inhibitors (molecule No 38, 44 and 12) exhibited the highest binding affinity of - 10.3, - 9.9 and - 9.3 kcal/mol, respectively, were observed to inhibit the target by forming strong hydrogen bonds with hydrophobic interactions. The physicochemical and ADMET/pharmacokinetic properties result showed that these three molecules are orally bioavailable, high gastrointestinal absorption, good permeability and non-inhibitors of CYP3A4 and CYP2D6 except for molecule No 38. Also, Molecules No 38 and 44 proved to be non-substrate of P-glycoprotein and nontoxicity to a human ether-a-go-go-related gene with predicted hERG toxicity endpoints (pIC(50) < 6) and low ADMET_Risk (< 7.0). The results of this study would provide physicochemical and pharmacokinetics properties needed to identify potent antipsychotic drugs and other relevant information in drug discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available