4.7 Article

Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 287, Issue -, Pages 720-726

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.11.073

Keywords

Abiotic N2O emissions; Ammonium-oxidizing bacteria; Partial nitrification; Sidestream; NH2OH; Chemical reaction

Funding

  1. Marie Curie Intra European Fellowship (GreenN2) [PIEF-GA-2012-326705]
  2. European Commission
  3. Generalitat de Catalunya
  4. SIAM Gravitation Grant [024.002.002]
  5. Netherlands Organization for Scientific Research

Ask authors/readers for more resources

The spontaneous abiotic (or chemical) reaction of hydroxylamine (NH2OH) at low concentrations (<0.4 mg N/L) with free nitrous acid (HNO2) was investigated at the conditions of partial nitritation of reject water. An abiotic batch reactor test was used to quantitatively assess the kinetics of the nitrous oxide (N2O) emission. The estimated chemical N2O emission rate was 0.16 mg N/L/h. In addition, the concentration of NH2OH in a full scale nitritation reactor, Single reactor High Activity ammonium Removal over Nitrite (SHARON) was measured in the range ca. 0.03-0.11 mg N/L. The presence of NH2OH in the SHARON reactor together with the abiotic N2O emissions rate (assessed in the abiotic batch reactor test) points towards a significant contribution of the abiotic N2O emission in the full scale reactor. An equivalent emission factor (N emitted as N2O/N oxidized in nitritation) of 1.1% was estimated to be linked to the abiotic pathway, which is around one third of the total measured N2O emission rate in the SHARON reactor. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Density measurements of aerobic granular sludge

Lenno van den Berg, Mario Pronk, Mark C. M. van Loosdrecht, Merle K. de Kreuk

Summary: This study compared four methods to measure the density of granular sludge in a full-scale plant treating domestic sewage, and assessed the effect of salinity on granule density. Most methods yielded reliable results, as long as the effect of salinity was considered.

ENVIRONMENTAL TECHNOLOGY (2023)

Article Engineering, Environmental

Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: Distinctions in protein expression, membrane composition and activities

V Kouba, D. Vejmelkova, E. Zwolsman, K. Hurkova, K. Navratilova, M. Laureni, P. Vodickova, T. Podzimek, J. Hajslova, M. Pabst, M. C. M. van Loosdrecht, J. Bartacek, P. Lipovova, D. G. Weissbrodt

Summary: This study compares the effect of gradual temperature decrease and cold shocks on the metabolic activity of anammox bacteria. The results show that cold shocks can significantly increase the activity of anammox bacteria and maintain the relative content of nitrogen respiration proteins. Cold shocks also induce the more efficient expression of potential cold shock proteins and contribute to the adaptation of anammox bacteria to low temperatures through changes in membrane lipid structure.

WATER RESEARCH (2022)

Article Engineering, Environmental

Short and long term continuous hydroxylamine feeding in a granular sludge partial nitritation reactor

Aina Soler-Jofra, Lisbeth Schmidtchen, Lluc Olmo, Mark C. M. van Loosdrecht, Julio Perez

Summary: This study investigates the short and long term impact of hydroxylamine on partial nitritation granular sludge. The results indicate that dissolved oxygen is the main factor determining the impact of hydroxylamine. Short term hydroxylamine feeding with low dissolved oxygen leads to higher hydroxylamine accumulation and N2O production, while long term hydroxylamine feeding reduces ammonium consumption rate.

WATER RESEARCH (2022)

Article Engineering, Environmental

Ionic strength of the liquid phase of different sludge streams in a wastewater treatment plant

T. Prot, L. Korving, M. C. M. Van Loosdrecht

Summary: In a wastewater treatment plant, the composition of sludge streams in the liquid phase varies with time and place. This study aims to evaluate the potential for the formation of precipitates and equilibria for weak acids/bases by determining the ionic strength and chemical composition. Based on a literature review, the concentration ranges for the major constituents of the liquid phase in different streams are proposed, and the reasons for concentration evolution and exceptional cases are discussed. The ionic strength and the contribution of its constituents are calculated, and the utilization of ionic strength in literature is also examined.

WATER SCIENCE AND TECHNOLOGY (2022)

Article Engineering, Environmental

Ammonium oxidation activity promotes stable nitritation and granulation of ammonium oxidizing bacteria

Xenia Juan-Diaz, Julian Carrera, Julio Perez

Summary: This study explored the operating conditions involved in the development of autotrophic aerobic granular sludge. The results showed that enhancing ammonium oxidation activity in the early phase was crucial for the stable development of autotrophic aerobic granular sludge.

JOURNAL OF WATER PROCESS ENGINEERING (2022)

Review Agricultural Engineering

A review on recovery of extracellular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges

Xingyu Chen, Yu-Jen Lee, Tian Yuan, Zhongfang Lei, Yasuhisa Adachi, Zhenya Zhang, Yuemei Lin, Mark C. M. van Loosdrecht

Summary: This review provides an overview of the current research and future directions in the recovery and utilization of high value-added biopolymers from conventional and advanced biological wastewater treatment systems. It discusses the recent developments in the understanding and functionality of extracellular biopolymers, as well as the factors influencing their yield, quality, and functionality. The review also explores potential practical applications of extracellular biopolymers and suggests research priorities for future prospects.

BIORESOURCE TECHNOLOGY (2022)

Article Engineering, Environmental

On anammox activity at low temperature: Effect of ladderane composition and process conditions

Vojtech Kouba, Kamila Hurkova, Klara Navratilova, Dana Kok, Andrea Benakova, Michele Laureni, Patricie Vodickova, Tomas Podzimek, Petra Lipovova, Laura van Niftrik, Jana Hajslova, Mark C. M. van Loosdrecht, David Gregory Weissbrodt, Jan Bartacek

Summary: In the study of the performance of anammox reactions under low-temperature conditions, membrane composition and cultivation temperature were found to be closely related to the activity of anammox biomasses. The adaptation of mesophilic cultures to low-temperature conditions may take several months or even up to 5 years. An interesting finding in these studies is that biomass enriched in the marine genus Candidatus Scalindua showed outstanding potential for nitrogen removal from cold streams.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Green & Sustainable Science & Technology

Towards sustainable production of minerals and chemicals through seawater brine treatment using Eutectic freeze crystallization and Electrodialysis with bipolar membranes

A. Culcasi, R. Ktori, A. Pellegrino, M. Rodriguez-Pascual, M. C. M. van Loosdrecht, A. Tamburini, A. Cipollina, D. Xevgenos, G. Micale

Summary: This paper proposes an innovative brine recovery system for obtaining high purity chemicals by integrating Eutectic Freeze Crystallization and Electrodialysis with Bipolar Membrane technologies. The experiments show that the integrated system effectively minimizes waste, promotes sustainability, and provides potential economic return.

JOURNAL OF CLEANER PRODUCTION (2022)

Article Engineering, Environmental

Oxygen transfer efficiency in an aerobic granular sludge reactor: Dynamics and influencing factors of alpha

Laurence Strubbe, Edward J. H. van Dijk, Pascalle J. M. Deenekamp, Mark C. M. van Loosdrecht, Eveline I. P. Volcke

Summary: In the pursuit of reducing carbon footprint and energy costs, energy efficiency is crucial. This study focused on aerobic granular sludge reactors and found that they consume up to 50% less energy compared to conventional activated sludge systems. The study also investigated the dynamic behavior of the alpha factor and identified exchange ratio and temperature as the main influencing factors on its rate of increase during the aeration phase.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Environmental Sciences

Coupling high-rate activated sludge process with aerobic granular sludge process for sustainable municipal wastewater treatment

Sadiye Kosar, Onur Isik, Busra Cicekalan, Hazal Gulhan, Seyma Cingoz, Mustafa Yoruk, Hale Ozgun, Ismail Koyuncu, Mark C. M. van Loosdrecht, Mustafa Evren Ersahin

Summary: Achieving a neutral/positive energy balance without compromising discharge standards is a key goal in wastewater treatment plants. This study explores the coupling of high-rate activated sludge (HRAS) process with aerobic granular sludge (AGS) process as an energy-efficient pre-treatment option. The results show that feeding the AGS process with a mixture of HRAS process effluent and raw municipal wastewater can increase energy recovery potential and maintain high effluent quality.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Construction & Building Technology

Bio-polymer modified bitumen

Amir Tabakovic, Jeremy Lemmens, Jelmer Tamis, Dave van Vliet, Sayeda Nahar, Willem Suitela, Mark van Loosdrecht, Greet Leegwater

Summary: Bitumen is essential in asphalt pavements for its binding properties and ability to restore damage caused by traffic loading. With the decline in crude oil production, there is a need to find environmentally sustainable alternatives for bitumen modifiers. This paper investigates the potential use of the bio-based co-polymer PHBV as an alternative bitumen modifier and presents positive results from various tests.

CONSTRUCTION AND BUILDING MATERIALS (2023)

Article Engineering, Environmental

Biotransformation of micropollutants in moving bed biofilm reactors under heterotrophic and autotrophic conditions

Navid Ahmadi, Mona Abbasi, Ali Torabian, Mark C. M. van Loosdrecht, Joel Ducoste

Summary: The transformation of four pharmaceuticals in a moving bed biofilm reactor was investigated under different COD/N ratios. Changes in the COD/N ratio influenced the competition between heterotrophic and nitrifying communities, resulting in shifts in microbial populations and composition in the biofilms. Autotrophic conditions exhibited higher transformation rates, indicating the importance of nitrification.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Materials Science, Characterization & Testing

Enhancement of fire resistance and mechanical performance of polypropylene composites containing cellulose fibres and extracellular biopolymers from wastewater sludge

Nam Kyeun Kim, Debes Bhattacharyya, Mark van Loosdrecht, Yuemei Lin

Summary: This research developed a bio-based flame retardant using a biopolymer derived from wastewater sludge to enhance the fire performance of polypropylene (PP). The study found that the extracellular polymeric substances (EPS) from wastewater sludge played a significant role in improving the char formation of PP composite. The incorporation of the bio-based flame retardant restricted the vertical burning characteristics of PP and improved its tensile moduli.

POLYMER TESTING (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)