4.8 Article

Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 11, Issue 7, Pages 2570-2576

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c00392

Keywords

-

Funding

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FC02-04ER15533]

Ask authors/readers for more resources

Two-dimensional (2D) lead halide perovskites with better chemical stability and tunable dimensionality offer new opportunities to design optoelectronic devices. We have probed the transient absorption behavior of 2D lead halide (bromide and iodide) perovskites of different dimensionality, prepared by varying the ratio of methylammonium:phenylethyl-ammonium cation. With decreasing dimensionality (n = infinity -> 1), we observe a blue shift in transient absorption bleach in agreement with the trend observed with the shift in the excitonic peak. The lifetime of the charge carriers decreased with decreasing layer thickness. The dependence of charge carrier lifetime on the 2D layers as well as the halide ion composition shows the dominance of excitonic binding energy on the charge carrier recombination in 2D perovskites. The excited-state behavior of 2D perovskites discussed in this study shows the need to modulate the layer dimensionality to obtain desired optoelectronic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available