4.6 Article

Catalytic Ozonation of Dairy Farming Wastewater Using a Mn-Fe-Ce/gamma-Al2O3 Ternary Catalyst: Performance, Generation, and Quenching of Hydroxyl Radicals

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 124, Issue 24, Pages 13215-13224

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c02925

Keywords

-

Funding

  1. Science and Technology Planning Project of Guangdong Province [2014A020209077]

Ask authors/readers for more resources

Effluent from a cow breeding base was remediated via a catalytic ozonation process that used Mn-Fe-Ce/gamma-Al2O3 as the catalyst, which was prepared by the impregnation roasting method. The catalyst was found to significantly influence the treatment effects for hydroxyl radical generation. HO center dot generation was qualitatively and quantitatively investigated using 5,5-dimethyl-1-pyrroline-n-oxide (DMPO) reagent, electron paramagnetic resonance (EPR), and coumarin fluorescence techniques, and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), Brunauer-Emmett-Teller (BET) method, Xray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) tests were performed to illustrate the structure and physical chemistry properties of the catalyst. The results showed that the modified Mn-Fe-Ce/gamma-Al2O3 ternary catalyst has excellent catalytic performance and that the introduction of Mn, Fe, and Ce promotes the formation of abundant oxygen defects on the catalyst surface, which is assumed to be responsible for HO center dot generation. The conversion of Ce(III)/Ce(IV) and electron transfer/ ejection due to the substitution of Ce(III)/Ce(IV) for Mn(II)/Fe(II)/Fe(III) were considered the fundamental intrinsic reasons underlying oxygen defect formation. In addition, the conditions for HO center dot quenching in the system were studied with the reaction time and catalyst dosage as parameters. The results supply a new technique for treatment of dairy farming wastewater and offer guidance for understanding the reaction mechanism of ternary supporting transition-metal catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available