4.6 Article

Shedding Light on the Molecular Surface Assembly at the Nanoscale Level: Dynamics of a Re(I) Carbonyl Photosensitizer with a Coadsorbed Cobalt Tetrapyridyl Water Reduction Catalyst on ZrO2

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 124, Issue 23, Pages 12502-12511

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c02556

Keywords

-

Funding

  1. Swiss National Science Foundation [CRSII2_ 160801/1]
  2. University Research Priority Program (URPP) for Solar Light to Chemical Energy Conversion (LightChEC) of the University of Zurich

Ask authors/readers for more resources

We present systematic kinetic studies of the interaction of a rhenium-based photosensitizer with a cobalt(II) tetrapyridyl water reduction catalyst coadsorbed on ZrO2 by transient IR and visible spectroscopies. The study focuses on the competition between the reduction of the excited pliotosensitizer by an electron donor in solution and nonproductive quenching between the photosensitizer and the catalyst, either by Dexter energy transfer or by electron transfer followed by ultrafast geminate recombination. The implications of both interactions for the charge transfer reactions on the surface are investigated. We find that the kinetics of the system as a whole and the achievable yield of reduced photosensitizer are determined by the inhomogeneous distribution of next neighbor distances between photosensitizers and the water reduction catalysts at the nanoscale level. This provides insight for rational design of heterogeneous water splitting systems with coimmobilized photosensitizers and catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available