4.7 Article

Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions

Journal

ACTA PHARMACOLOGICA SINICA
Volume 36, Issue 7, Pages 791-799

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/aps.2015.26

Keywords

sodium channel blocker; methyl eugenol; peripheral Na(v)1.7 channels; local anesthetics; analgesic; asarum; Xixin

Funding

  1. Ministry of Personnel, China
  2. Banbury Fund
  3. US PHS [GM08016, MD07597]
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [1355034] Funding Source: National Science Foundation

Ask authors/readers for more resources

Aim: Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders. Methods: The direct interaction of methyl eugenol with Na+ channels was explored and characterized using electrophysiological recordings from Na(v)1.7-transfected CHO cells. Results: In whole-cell patch clamp mode, methyl eugenol tonically inhibited peripheral nerve Na(v)1.7 currents in a concentration-and voltage-dependent manner, with an IC50 of 295 mu mol/L at a -100 mV holding potential. Functionally, methyl eugenol preferentially bound to Na(v)1.7 channels in the inactivated and/or open state, with weaker binding to channels in the resting state. Thus, in the presence of methyl eugenol, Na(v)1.7 channels exhibited reduced availability for activation in a steady-state inactivation protocol, strong use-dependent inhibition, enhanced binding kinetics, and slow recovery from inactivation compared to untreated channels. An estimation of the affinity of methyl eugenol for the resting and inactivated states of the channel also demonstrated that methyl eugenol preferentially binds to inactivated channels, with a 6.4 times greater affinity compared to channels in the resting state. The failure of inactivated channels to completely recover to control levels at higher concentrations of methyl eugenol implies that the drug may drive more drug-bound, fast-inactivated channels into drug-bound, slow-inactivated channels. Conclusion: Methyl eugenol is a potential candidate as an effective local anesthetic and analgesic. The antinociceptive and anesthetic effects of methyl eugenol result from the inhibitory action of methyl eugenol on peripheral Na+ channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available