4.7 Article

Design of Efficient Resonator-Enhanced Electro-Optic Frequency Comb Generators

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 38, Issue 6, Pages 1400-1413

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2020.2973884

Keywords

Optical resonators; Generators; Resonant frequency; Frequency modulation; Optical modulation; Optical coupling; Electro-optic modulation; integrated optics; optical communications; optical frequency combs

Funding

  1. Facebook
  2. Maxim Integrated
  3. National Science Foundation [ECCS-1740291 E2CDA]

Ask authors/readers for more resources

Resonator-enhanced electro-optic (RE-EO) frequency comb generators produce broad combs by coupling an optical field to a resonator containing a phase modulator driven at a harmonic of the resonator free spectral range (FSR). Recent advances in integration technologies have opened up the possibility of fabricating low-loss, efficient, and tunable ring-based RE-EO comb generators. In this work, we analyze the properties of a canonical ring-based RE-EO comb generator and propose a new dual-ring comb generator to increase comb conversion efficiency, an especially important characteristic for comb-based optical communications systems. After a brief review of RE-EO comb generator properties in the case of resonant operation, i.e., when the optical frequency and the modulation frequency are harmonics of the resonator FSR, we analyze the effect of input optical phase noise and modulation phase noise on the resulting comb. Additionally, we show analytically that in non-resonant operation the optical frequency offset and the modulation frequency offset can be much larger than the linewidth of the resonator, increasing the tolerance to fabrication errors. Then, we develop and validate numerical models to predict the output spectrum in the presence of dispersive waveguides, which cannot be modeled analytically. Using these accurate models, we analyze a dual-ring RE-EO comb generator that uses a small coupling ring to increase the conversion efficiency to 32%, compared to the 1.3% efficiency of a single-ring RE-EO comb generator. We then analyze a point-to-point inter-data center optical link and determine that a dual-ring RE-EO comb generator can support high-capacity coherent links at 20 Tb/s per fiber.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available