4.4 Article

Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 54, Issue 24, Pages 3625-3636

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998320918646

Keywords

Metal matrix composites; microwave sintering; microstructure; X-ray diffraction; micro and nano-hardness; elastic modulus

Ask authors/readers for more resources

The study focuses on the microstructural, phase transformation, and physical and mechanical aspects of aluminum/zinc oxide composite produced by a hybrid microwave sintering technique. In the present case, zinc oxide nanorods were synthesized through a cost-effective thermal decomposition method. The obtained zinc oxide nanorods' length was in the range of 76-168 nm observed through high-resolution transmission electron microscopy images and crystallinity nature was confirmed by the bright spot in the selected area electron diffraction pattern. Two different wt% (i.e. 0.5 and 2) of zinc oxide nanorods were utilized for the fabrication of the composite material. The diffraction pattern of the milled powder and energy dispersive spectroscopy results shows effective diffusion of zinc oxide nanorods in the aluminum. The elemental mapping of milled powder illustrates the uniform distribution of the reinforcement over matrix material. The micro-hardness results exhibit a higher hardness of 27.78% with a small fraction of 2 wt%. The nano-indentation results confirm the improvement in the nano-hardness by 32.21% with 2 wt% of zinc oxide with a marginal decrease in elastic modulus by 4.92%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available