4.6 Article

Determination of transformation products of per- and polyfluoroalkyl substances at trace levels in agricultural plants

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1625, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2020.461271

Keywords

PFAS transformation products; Plant samples; Fluorotelomer; Perfluoroalkane sulfonamidoethanol; Quantification

Funding

  1. Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wurttemberg, Germany within the EOFplus project [L75 17016]

Ask authors/readers for more resources

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment. However, only a limited number of predominantly persistent perfluoroalkyl acids (PFAAs) have been analyzed in edible plants so far. We present a generic trace analytical method that allows for quantification of 16 intermediate fluorotelomer alcohol (FTOH)- or perfluoroalkane sulfonamidoethanol (FASE)-based transformation products as well as 18 PFAAs in plants. Additionally, 36 suspected intermediate PFAS transformation products were qualitatively analyzed. The ultrasound-assisted solid-liquid extraction of wheat and maize grain, maize leaves, Jerusalem artichoke and ryegrass (1-5 g plant sample intake) was followed by a clean-up with dispersive solid-phase extraction using graphitized carbon adsorbent (5-10 mg per sample) and chemical analysis by reversed phase liquid chromatography-tandem mass spectrometry. The method was based on matrix matched and extracted calibration and displayed good precision with relative standard deviations in triplicate analyses typically below 15% for all quantified analytes and matrices. An average deviation of 12% between quantified concentrations obtained by matrix matched and extracted calibration and a method based on isotopically labelled internal standards underlines the good trueness of the method. The method quantification limits for the majority of analytes in all plant samples were in the low ng/kg concentration range on a dry weight basis. Plant matrices were analyzed from crops grown on agricultural fields that have been contaminated with PFASs. FTOH- and/or FASE-based intermediate transformation products were detected in all samples with N-ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) and perfluorooctane sulfonamide (FOSA) as the prevailing compounds in concentrations up to several hundred ng/kg in maize leaves. The 9:3 Acid (a transformation product of 10:2 FTOH) was tentatively identified. In accordance with these findings, the final degradation products perfluorooctane sulfonic acid (PFOS) and perfluorodecanoic acid (PFDA) were frequently detected. For perfluoroalkyl carboxylic acids (PFCAs), according to earlier findings, short chain homologues generally displayed the highest levels (up to 98 pg/kg for perfluorobutanoic acid (PFBA) in maize leaves). However, maize grain was an exception showing the highest concentrations for long chain PFCAs, whereas PFBA was not detected. The uptake of high levels of PFASs into plants is of concern since these may be used as animal feed or represent a direct exposure medium for humans. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Environmental

Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach

Matthias Muschket, Carolina Di Paolo, Andrew J. Tindall, Gerald Touak, Audrey Phan, Martin Krauss, Kristina Kirchner, Thomas-Benjamin Seiler, Henner Hollert, Werner Brack

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2018)

Article Engineering, Environmental

Ozonation products from trace organic chemicals in municipal wastewater and from metformin: peering through the keyhole with supercritical fluid chromatography-mass spectrometry

Bettina Seiwert, Maolida Nihemaiti, Coretta Bauer, Matthias Muschket, Daniel Sauter, Regina Gnirss, Thorsten Reemtsma

Summary: The study utilized SFC-HRMS compared to RPLC-HRMS to identify new products in ozonated wastewater treatment, demonstrating the advantages of gas chromatography-mass spectrometry for highly polar analytes. Results showed that a combination of sand/anthracite and fresh post-granular activated carbon was most effective in removing products, but several persistent products were still observed.

WATER RESEARCH (2021)

Article Environmental Sciences

Sources and Fate of the Antiandrogenic Fluorescent Dye 4-Methyl-7-Diethylaminocoumarin in Small River Systems

Matthias Muschket, Werner Brack, Pedro A. Inostroza, Liza-Marie Beckers, Tobias Schulze, Martin Krauss

Summary: A recent study investigated the sources, distribution, and fate of novel environmental contaminants in the Holtemme River, Germany, finding that cation binding played a significant role in the sorption behavior of these compounds. The study also revealed that the main source of these contaminants was a wastewater-treatment plant and showed significant persistence in aquatic systems with minimal transformation.

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY (2021)

Article Engineering, Environmental

Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems

Isabelle Neuwald, Matthias Muschket, Daniel Zahn, Urs Berger, Bettina Seiwert, Till Meier, Jochen Kuckelkorn, Claudia Strobel, Thomas P. Knepper, Thorsten Reemtsma

Summary: HILIC and SFC coupled to HRMS were used to search for PM chemicals in surface waters, identifying 64 compounds with high polarity and low molecular weight. The discovery of novel water contaminants suggests that the universe of PM chemicals in the environment has been scarcely explored.

WATER RESEARCH (2021)

Correction Biochemical Research Methods

Systematic evidence map (SEM) template: Simultaneous determination of three strong polarity herbicides in tea by ion chromatography-triple quadrupole mass spectrometry (vol 1709 464407 2023)

Yong Wang, Suhua Yu, Rui Li, Jing Wan, Yuheng Wang, Zongli Huo, Chunyong Wu, Li Mi, Songqin Liu

JOURNAL OF CHROMATOGRAPHY A (2024)

Review Biochemical Research Methods

Organic-silica hybrid monolithic sorbents for sample preparation techniques: A review on advances in synthesis, characterization, and applications

Israel D. Souza, Maria Eugenia C. Queiroz

Summary: Organic-silica hybrid monolithic materials have gained significant attention in separation science and sample preparation due to their unique properties. This review summarizes the characteristics, current status, and recent developments of these materials, as well as discusses synthesis methods, characterization techniques, and strategies for improving extraction efficiency in various applications.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Application of high-performance liquid chromatography in determining saturates and aromatic hydrocarbons along with polars/additives in automotive finished and used lubricating oils

Bhagwat Upreti, Bhanu Prasad Vempatapu, Jagdish Kumar, Pankaj K. Kanaujia

Summary: Lubricating oils are essential for the effective performance of internal combustion engines. This study presents a new HPLC method for determining additives in finished lubricating oils and polar substances in used engine oils.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

A specific nanobody-based affinity chromatography resin as a platform for small ubiquitin-related modifier fusion protein purification

Zongqing Huang, Haoju Hua, Xiuzhen Du, Zipeng Zhen, Wei Zhao, Jun Feng, Ji-an Li

Summary: This study successfully isolated VHHs against the SUMO protein for the first time using biopanning of an immune camelid nanobody library. The VHHs were coupled to agarose resins to form affinity chromatography resins, allowing for one-step purification of various SUMO fusions.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

An in-line method for high-throughput screening of protein tyrosine phosphatase receptor type O inhibitors by capillary electrophoresis based on electrophoretically mediated microanalysis

Xueting Qiu, Xuben Hou, Yue Yang, Hao Fang, Fei Cui, Xinying Yang

Summary: In this study, a new method based on electrophoretically mediated microanalysis was developed for the investigation of PTPRO enzymatic activity. The method was successfully used to determine the kinetics of PTPRO and the inhibitory concentration of PTPRO inhibitors. The method exhibited improved accuracy and reduced consumption compared to traditional methods.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Identification of nonvolatile organic compounds (NVOCs) in biopharmaceuticals through non-target analysis and quantification using complexation-precipitation extraction

Feifei Luo, Mengmeng Hao, Lei Zhang, Yangguo Xie, Wei Hou, Hongya Wang, Zhongli Zhang

Summary: In this study, a comprehensive screening and structure elucidation of 23 nonvolatile organic compounds (NVOCs) in two antibody drugs was conducted. Seven previously unreported compounds were identified. A quantitative method with high sensitivity, accuracy, and precision was developed for evaluating the safety of NVOCs in drug products.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Hydrophilic interaction liquid chromatography with mass spectrometry for the separation and identification of antisense oligonucleotides impurities and nusinersen metabolites

Zuzana Vosahlova, Kveta Kalfkova, Martin Gilar, Jakub Szymarek, Maria Mazurkiewicz-Beldzinska, Sylwia Studzi

Summary: A hydrophilic interaction liquid chromatography method was developed for the separation and identification of oligonucleotide impurities and metabolites, and successfully applied to the analysis of serum samples from Spinraza-treated patients.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Amide-decorated reusable C18 silica-packed columns for the rapid, efficient and sequential separation of lanthanoids using reversed phase-high performance liquid chromatography

Aswanidevi Kongasseri, Thirumalai Madhesan, Sangeetha Krishna Kumar, Sushmitha Pedugu Sivaraman, Suchashrita Mitra, Pitchaiah Kancharlapalli Chinaraga, C. V. S. Brahmmananda Rao, Sivaraman Nagarajan, Prabhakaran Deivasigamani, Akhila Maheswari Mohan

Summary: This study focuses on the sequential separation of trivalent lanthanides using modified C-18 silica-packed supports and reversed-phase HPLC technique. By tuning the column modifiers and separation parameters, the researchers achieved systematic separation of Ln(3+). The results showed that the choice of column modifiers and fine-tuning of the modification procedure were crucial for achieving excellent separation.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Improved sample introduction approach in hydrophilic interaction liquid chromatography to avoid breakthrough of proteins

Raquel Perez-Robles, Szabolcs Fekete, Robert Kormany, Natalia Navas, Davy Guillarme

Summary: There is a mismatch between the sample diluent and the mobile phase in HILIC analysis, leading to analyte breakthrough and peak distortion. Adding a weak solvent for pre-injection can effectively prevent these issues and improve sensitivity.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Chromatography-like propagation of water along raw material bed in supercritical fluid extraction

Oleg Pokrovskiy, Irina Rostovschikova, Konstantin Ustinovich, Ilya Voronov, Dmitry Kosyakov

Summary: A chromatography-like propagation of water through the material bed was observed during supercritical fluid extraction of aroma plants with high moisture content, which could be significant for modeling the kinetics of supercritical fluid extraction of non-volatile compounds.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Breakthrough curve analysis of phosphorylated hazelnut shell waste in column operation for continuous harvesting of lithium from water

Yasar Kemal Recepoglu, Ozguer Arar, Asli Yuksel

Summary: Biosorption using phosphorylated hazelnut shell waste (FHS) is a promising method for lithium removal and recovery. This study investigated the performance of a continuous-flow packed-bed column system using FHS for ultra-low level lithium removal. The results showed that the lihium biosorption capacity of the FHS column was unaffected by the bed height, but decreased with increasing flow rate.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Multivariate surface self-assembly strategy to fabricate ionic covalent organic framework surface grafting monolithic sorbent for enrichment of aristolochic acids prior to high performance liquid chromatography analysis

Jian Sun, Zheheng Zheng, Zixiao Jia, Jiabin Wang, Xucong Lin

Summary: In this study, an ionic covalent organic framework (iCOF) surface grafting monolithic sorbent was prepared for in-tube solid-phase microextraction (SPME) of aristolochic acids (AAs) in various samples. The density of quaternary ammonium ions in the iCOF was modulated for enhanced adsorption of AAs. The iCOF surface grafting monolithic sorbent was confirmed by different means. Several operating conditions were optimized to develop the online in-tube SPME-HPLC method, which showed good linearity, low limits of detection, and high recoveries for AAs in serum samples. This study presents a feasible approach for the application of COF-based monolithic sorbents in sample preparation.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

Chitosan-alginate sponge with multiple cross-linking networks for adsorption of anionic dyes: Preparation, property evaluation, mechanism exploration, and application

Zeng Wen, Ruihan Peng, Die Gao, Jing Lin, Jia Zeng, Zhou Li, Famin Ke, Zhining Xia, Dandan Wang

Summary: A chitosan-alginate sponge with multiple cross-linking networks was developed for adsorption and enrichment of anionic dyes from food samples. The sponge showed better three-dimensional network structure, mechanical behavior, and stability compared to pure chitosan and alginate sponges. The adsorption performance and selectivity of the sponge were systematically studied, and it maintained high adsorption capacity and selectivity for anionic dyes. The sponge also showed satisfactory reusability and was successfully combined with high-performance liquid chromatography for the enrichment and detection of anionic dyes in candy and cocktail samples.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

An integrated approach for studying the metabolic profiling of herbal medicine in mice using high-resolution mass spectrometry and metabolomics data processing tools

Hairong Zhang, Xiaojuan Jiang, Dandan Zhang, Yuexin Yang, Qiang Xie, Caisheng Wu

Summary: Analysis of in vivo exposure to traditional Chinese medicine using mass spectrometry is helpful for identifying effective ingredients and developing new drugs. This study focused on Forsythia suspensa (Lian Qiao) and used metabolomics technology to explore its in vivo exposure. By comparing the differences before and after administration, a complete set of nontargeted analysis strategies for TCM exposure was established. The study identified 393 Lian Qiao-related chemical components in mice after administration, including prototypes and metabolites. This study provides a reference for research on the active ingredients of Lian Qiao in vivo.

JOURNAL OF CHROMATOGRAPHY A (2024)

Article Biochemical Research Methods

A two-run heart-cut multidimensional gas chromatography method using flame ionization and mass spectrometry for automated and robust determination of nearly complete wine aroma-volatile profiles

Oscar Castejon-Musulen, Ricardo Lopez, Ignacio Ontan, Vicente Ferreira

Summary: A quantitative analytical method was developed and validated in this study to determine the concentrations of 81 aroma-relevant wine volatiles. The method utilizes stir bar sorptive extraction and multidimensional gas chromatography with flame ionization detector or mass spectrometer. The method demonstrated good linearity, reproducibility, and recovery, and was successfully applied to analyze 20 wine samples.

JOURNAL OF CHROMATOGRAPHY A (2024)