4.7 Article

Accurate Quantum Chemical Calculation of Ionization Potentials: Validation of the DFT-LOC Approach via a Large Data Set Obtained from Experiments and Benchmark Quantum Chemical Calculations

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 4, Pages 2109-2123

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00875

Keywords

-

Funding

  1. Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]

Ask authors/readers for more resources

Density functional theory (DFT) is known to often fail when calculating thermodynamic values, such as ionization potentials (IPs), due to nondynamical error (i.e., the self-interaction term). Localized orbital corrections (LOCs), derived from assigning corresponding corrections for the atomic orbitals, bonds, and paired and unpaired electrons, are utilized to correct the IPs calculated from DFT. Some of the assigned parameters, which are physically due to the contraction of and change of the environment around a bond, depend on identifying the location in the molecule from which the electron is removed using differences in the charge density between neutral and oxidized species. In our training set, various small organic and inorganic molecules from the literature with the reported experimental IP were collected using the NIST database. For certain molecules with uncertain or no experimental measurements, we obtain the IP using coupled cluster theory and auxiliary field quantum Monte Carlo. After applying these corrections, as generated by least-squares regression, LOC reduces the mean absolute deviation (MAD) of the training set from 0.143 to 0.046 eV (R-2 = 0.895), and LOC reduces the MAD of the test set from 0.192 to 0.097 eV (R-2 = 0.833).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available