4.7 Article

Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 824, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.153803

Keywords

NiO/Ti3C2 nanomaterials; Ti3C2 MXene; Cathode catalyst; Li-O-2 battery

Funding

  1. National Natural Science Foundation of China of China [21871028, 21471020, 21771024]

Ask authors/readers for more resources

With a remarkably high theoretical energy storage capacity, a rechargeable lithium oxygen battery has attracted enormous attention. However, inert kinetics of oxygen evolution reaction and oxygen reduction reaction process generate low round-trip efficiency and poor cyclability. NiO materials are recognized as efficient and low-cost catalysts for Li-O-2 battery. Here, we report a controllable approach to synthesize metal oxide decorated highly conductive Ti3C2 composite as cathode catalyst for rechargeable Li-O-2 battery. In this composite, multi-layered Ti3C2 MXene enacts a superior host to load NiO nanoparticles on account of the open layered structure, the good electronic conductivity and the excellent chemical stability. Serving as Li-O-2 battery cathode catalyst, NiO/Ti3C2 nanomaterials deliver a high initial capacity of 13350 mAh g(-1) and good cycling performance of over 90 rounds at a current density of 100 mA g(-1) and 500 mA g(-1), respectively. Such properties of the prepared composite are attributed to the excellent conductivity of MXene and the high catalytic activity of NiO. As far as we know, this is the prior report that MXenes based materials are made into Li-O-2 battery cathodes catalyst and proved to have a potential application in cathode materials of Li-O-2 battery. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Ultrathin hexagonal boron nitride as a van der Waals' force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery

Zemin Sun, Di Wang, Liu Lin, Yuhui Liu, Mengwei Yuan, Caiyun Nan, Huifeng Li, Genban Sun, Xiaojing Yang

Summary: Reasonably regulating electronic coupling can enhance the catalytic activity. Constructing van der Waals heterojunction based on 2D materials is a potential way to optimize material properties. Introducing inert h-boron nitride in non-metal reduced graphene oxide catalysts can significantly improve the performance of Li-CO2 batteries.

NANO RESEARCH (2022)

Article Chemistry, Multidisciplinary

Theoretical Design and Structural Modulation of a Surface-Functionalized Ti3C2Tx MXene-Based Heterojunction Electrocatalyst for a Li-Oxygen Battery

Xingzi Zheng, Mengwei Yuan, Donghua Guo, Caiying Wen, Xingyu Li, Xianqiang Huang, Huifeng Li, Genban Sun

Summary: A surface-functionalized nitrogen-doped two-dimensional N-TiO2/Ti3C2Tx heterojunction with high conductivity and optimized electrocatalytic active sites was fabricated. It exhibited high specific capacity and superior cyclability in Li-oxygen batteries, along with reduced overpotential. Through experiments and tests, its high stability and reduced side reaction were verified.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

In situ decoration of CoP/Ti 3 C 2 T x composite as efficient electrocatalyst for Li-oxygen battery

Xingzi Zheng, Mengwei Yuan, Xianqiang Huang, Huifeng Li, Genban Sun

Summary: This paper introduces a novel Li-O2 battery electrocatalyst, a surface-functionalized CoP/Ti3C2Tx composite. The composite exhibits optimized electronic structure and active electrons, which enhance the efficiency of electrochemical reactions. The accordion shaped Ti3C2Tx with large specific surface area and excellent electronic conductivity enables sufficient exposure of active sites and Li2O2 deposition. Transition metal phosphides provide more active catalytic sites and exhibit good electrocatalytic performance. As an electrocatalyst in Li-O2 battery, the CoP/Ti3C2Tx composite achieves high specific discharge capacity and low overpotential, outperforming CoP and Ti3C2Tx individually. The application of transition metal phosphides and MXene in Li-O2 battery not only demonstrates higher cycling stability of the prepared composite, but also points out the direction for improving their electrochemical performance.

CHINESE CHEMICAL LETTERS (2023)

Article Materials Science, Multidisciplinary

Self-Catalyzed Rechargeable Lithium-Air Battery by in situ Metal Ion Doping of Discharge Products: A Combined Theoretical and Experimental Study

Mengwei Yuan, Zemin Sun, Han Yang, Di Wang, Qiming Liu, Caiyun Nan, Huifeng Li, Genban Sun, Shaowei Chen

Summary: The insulating nature of Li2O2 and the limited activity of solid-solid/-liquid interfaces hinder the performance of lithium-air battery, but in-situ doping of Li2O2 with select metal ions can greatly enhance the battery performance.

ENERGY & ENVIRONMENTAL MATERIALS (2023)

Article Chemistry, Physical

Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity

Zemin Sun, Liu Lin, Mengwei Yuan, Huiying Yao, Yingjia Deng, Binbin Huang, Huifeng Li, Genban Sun, Jia Zhu

Summary: This study successfully optimized the electronic structure of sulfur sites and enhanced proton adsorption properties under various pH conditions by constructing a pH-universal adaptability Mo-MoS2 MSH structure.

NANO ENERGY (2022)

Article Chemistry, Physical

Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced

Jingshen Xu, Na Lu, Mengwei Yuan, Genban Sun

Summary: In this study, Fe2O3/CNFs composites were prepared by the in-situ transformation method, combining carbon nanofibers (CNFs) with hollow rice-grained alpha-Fe2O3 nanoparticles. The rational microstructure design reduced the filling ratio, optimized impedance matching, and improved electromagnetic wave absorption performance. The Fe2O3/CNFs composites achieved strong reflection loss (-38.1 dB) and broad effective absorption bandwidth (4.6 GHz) at a low filling ratio (20 wt.%), and analysis of electromagnetic parameters confirmed the crucial role of the microstructure in the performance improvement. With optimized impedance matching and a simple preparation method, Fe2O3/CNFs have broad application prospects in electromagnetic wave absorption.

NANO RESEARCH (2023)

Article Chemistry, Physical

Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis

Liu Lin, Ruiyun Xin, Mengwei Yuan, Tongyue Wang, Jie Li, Yunming Xu, Xuhui Xu, Mingxuan Li, Yu Du, Jianing Wang, Shuyi Wang, Fubin Jiang, Wenxin Wu, Caicai Lu, Binbin Huang, Zemin Sun, Jian Liu, Jinlu He, Genban Sun

Summary: Based on experimental and theoretical studies, the spin-magnetic effect of iron group layered double hydroxides (LDHs) was found to enhance the oxygen evolution reaction (OER) process. The saturation magnetization of iron group LDHs positively correlates with their OER performance under different magnetic fields. Among the tested LDHs, NiCoFe-LDHs show the strongest OER activity and saturation magnetization.

ACS CATALYSIS (2023)

Review Electrochemistry

A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites

Mengwei Yuan, Xingzi Zheng, Jingshen Xu, Qiao Ni, Luoqi Luo, Zejun Cai, Zemin Sun, Liu Lin, Genban Sun

Summary: MXenes, as typical two-dimensional layered structure materials, have been widely used in energy conversion and storage due to their high conductivity, ion transport ability, and rich surface structures. Recently, MXenes and their composites have been widely employed in secondary batteries, especially sodium-ion batteries (SIBs), with obvious performance improvement. By utilizing the advantages of MXenes, the construction of surface-functionalized MXenes and MXene-based composites effectively improves the conductivity and mass-transport properties of composites, alleviates volume expansion, and enhances the capacity properties, rate performances, and cycle stability of SIBs.

BATTERIES-BASEL (2023)

Article Chemistry, Physical

Quantitative decorating Ni-sites for water-oxidation with the synergy of electronegative sites and high-density spin state

Yayin Li, Mengwei Yuan, Han Yang, Kefan Shi, Zemin Sun, Huifeng Li, Caiyun Nan, Genban Sun

Summary: Oxygen evolution reaction (OER) is the rate-limiting step in water-splitting. By regulating the electronic structure and spin state density of Ni-sites, Ni-MOF with transition metals showed high catalytic activities for OER. This work provides a new reference for understanding the catalytic mechanism and designing spin electrocatalysts.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Hollow catalysts through different etching treatments to improve active sites and oxygen vacancies for high-performance Li -O-2 battery

Jiachen Qiu, Yuran Lin, Shuting Zhang, Jie Ma, Yu Zhang, Mengwei Yuan, Genban Sun, Caiyun Nan

Summary: A series of hollow catalysts were synthesized based on the structure of cubic zeolitic imidazolate framework-67 (ZIF-67) through different chemical etching treatments. The TA-ZIF catalyst with a more stable hollow structure and more oxygen vacancies was found to significantly improve the performance of Li-O-2 batteries.

NANO RESEARCH (2023)

Article Chemistry, Physical

Optimal geometrical configuration and oxidation state of cobalt cations in spinel oxides to promote the performance of Li-O2 battery

Yu Zhang, Shuting Zhang, Mengwei Yuan, Yufeng Li, Rong Liu, Caiyun Nan, Chen Chen

Summary: Through regulating the synthesis process, ZnCo2O4 with a unique Co site was obtained by replacing Co2+ and Co3+ sites in Co3O4 with Zn and Al atoms. The Li-O-2 batteries based on ZnCo2O4 showed longer cycle life than that of CoAl2O4, suggesting that Co-Oh(3+) site is a relatively better geometric configuration than Co-Td(2+) site for Li-O-2 batteries.

NANO RESEARCH (2023)

Review Chemistry, Physical

Status and Prospects of MXene-Based Lithium-Oxygen Batteries: Theoretical Prediction and Experimental Modulation

Xingzi Zheng, Mengwei Yuan, Yuelin Zhao, Zihan Li, Kefan Shi, Huifeng Li, Genban Sun

Summary: This paper summarizes the latest research progress in MXene-based materials in LOBs, highlighting the significance of high conductivity and surface functionalization strategies in the theoretical design and experimental modulation, which promote electrode reaction kinetics and cyclability of LOBs. It also outlines the prospects and challenges of MXene-based LOBs and proposes novel strategies to enhance battery performance, inspiring future progress in designing high-performance LOBs using MXene materials.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Hollow catalysts through different etching treatments to improve active sites and oxygen vacancies for high-performance Li-O2 battery

Jiachen Qiu, Yuran Lin, Shuting Zhang, Jie Ma, Yu Zhang, Mengwei Yuan, Genban Sun, Caiyun Nan

Summary: In this study, a series of hollow catalysts were synthesized based on the structure of cubic zeolitic imidazolate framework-67 (ZIF-67) through various chemical etching treatments. These hollow structures have larger surface areas and can expose more active sites, leading to improved performance of Li-O-2 batteries.

NANO RESEARCH (2023)

Article Chemistry, Applied

Ultralong cycle life enabled by in situ growth of CoMo1-xP/Mo heterostructure for lithium-sulfur batteries

Donghua Guo, Mengwei Yuan, Xingzi Zheng, Miaomiao Li, Caiyun Nan, Genban Sun, Xianqiang Huang, Huifeng Li

Summary: By introducing metal molybdenum and designing a porous tubular structure of CoMo1-xP/Mo sulfur host, the conductivity and cycling stability of lithium-sulfur batteries can be improved, and the shuttle effect can be effectively inhibited, providing a new approach for the further design of high-performance cathode materials for lithium-sulfur batteries.

JOURNAL OF ENERGY CHEMISTRY (2022)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)