4.7 Article

Parametric investigation of the enhancing effects of finned tubes on the solidification of PCM

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2020.119485

Keywords

PCM; Finned tube; Solidification; Interface position; Interface velocity; Time for complete phase change; Correlations

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [304372/2016-1]

Ask authors/readers for more resources

This paper presents the results of a study on the enhancement of solidification around finned tubes and the development of correlations to predict their thermal performance. The effects of the geometrical and operational parameters on the solidification process and thermal performance are investigated. A numerical code to predict the solidification around radial finned tubes based on pure conduction and the enthalpy method is developed and validated against experimental results showing good agreement. Results of additional experiments were also used to develop correlations for the interface position, interface velocity and the time for complete solidification. The fin diameter, and low tube wall temperature enhance the interface position and velocity, and reduce the time for complete solidification. Experiments showed that there is an optimum fin diameter for which the solidified phase change material (PCM) and stored energy are the highest. The proposed correlations for the interface position, interface velocity and the time for complete phase change seem to agree well with experimental results within maximum deviation of 4%, 7% and 1.03%, respectively. Hence, the correlations can be used for overall and quick estimates of solidification of PCM around radial finned tubes. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available