4.5 Article

Effect of dentine cutting efficiency on the lateral force created by torque-controlled rotary instruments

Journal

INTERNATIONAL ENDODONTIC JOURNAL
Volume 53, Issue 8, Pages 1153-1161

Publisher

WILEY
DOI: 10.1111/iej.13319

Keywords

austenite; intracanal lateral force; martensite; root canal

Funding

  1. Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich

Ask authors/readers for more resources

Aim To study the impact of dentine cutting efficiency of rotary instruments on the lateral force they create when instrumenting simulated root canals in bovine dentine. Methodology Lateral cutting efficiency of austenitic files (ProTaper Universal) was compared to that of counterparts of a reported identical geometrical design with a martensite phase component (ProTaper Gold) in bovine dentine disks (n = 6). Instrument shapes were studied using digital microscopy. The intracanal lateral force exerted by the two systems in simulated premolars (n = 9) made from bovine incisor roots containing a standardized narrow root canal of 16 mm length was monitored using a testing apparatus equipped with a torque-controlled endodontic motor/handpiece. Data were compared using parametric statistics, alpha error = 0.05. Results The geometrical design of the two systems under investigation was found to be identical. The martensitic nickel-titanium rotary files had a significantly (t-test, P < 0.05) higher lateral cutting efficiency than austenitic counterparts. This difference, however, did not impact the lateral force that was created when instrumenting simulated premolar root canals. Furthermore, lateral force peaks were generated with the progressively tapered instruments under investigation towards the full working length. Even though a glide path was prepared, the first instrument in the full-length sequence (S1) created the highest lateral force (anova/Tukey's HSD, P < 0.05). Conclusions The current experimental set-up allows the study of the lateral force generated during root canal instrumentation. This force was not influenced by the dentine cutting efficiency of the instruments under investigation, but rather by their geometrical design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available