4.7 Article

Microstructure, hardness and toughness of boron carbide thin films deposited by pulse dc magnetron sputtering

Journal

CERAMICS INTERNATIONAL
Volume 42, Issue 5, Pages 6342-6346

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2016.01.025

Keywords

Amorphous boron carbide thin films; Pulse dc magnetron sputtering; Hardness; Toughness

Ask authors/readers for more resources

Boron carbide thin films were deposited on (100) silicon substrates at ambient temperature via. pulse dc magnetron sputtering. Various frequency and duty cycles were applied to the hot-pressed B4C target in order to understand their influence on the structure and mechanical properties of the B4C films. X-ray Energy dispersive spectrum, Raman spectroscopy and Transmission electronic microscopy were used to characterize the composition and microstructure of the films. Nanoindenter was employed to measure the hardness and modulus. The film toughness was evaluated by a microindentation method. The results show that both pulse frequency and duty cycle significantly affect the B/C atomic ratio and then hardness and modulus in the boron carbide films. However, the amorphous structure of the films was maintained when the frequency and duty cycle changed. The maximum hardness of 29 GPa and modulus of 247 GPa combined with relative high toughness (3.3 MPa m(1/2)) were achieved under 50 kHz frequency and 30% duty cycle. In addition, there was no evidence to prove that the graphite phase existed in the B4C films although exceeded C concentration was detected. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available