4.3 Article

A Novel Approach of Bulk Strength Enhancement through Microbially-Mediated Carbonate Cementation for Mylonitic Coal

Journal

GEOMICROBIOLOGY JOURNAL
Volume 37, Issue 8, Pages 726-737

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01490451.2020.1764675

Keywords

Bulk strength; microbially-mediated carbonate cementation; mylonitic coal; stiffness

Funding

  1. National Science Foundation of China [51604051]
  2. Natural Science Foundation of Chongqing [cstc2018jcyjA2664]

Ask authors/readers for more resources

Mylonite coal is known to be highly tectonically deformed coal and is a result of crushing original coal into fine-grained coal under multiple tectonic events. Because of its granular nature and the resultant inferior mechanical property, the borehole stability during both drilling and gas drainage is challenging due to unpredictable failures. This study explored a potential approach to enhance the bulk strength of mylonitic coal via microbiologically-mediated CaCO3 cementation which effectively increases the cohesion of the fine coal particles through the bio-cementation process. The experimental results indicated that the mechanical strength was significantly enhanced after a short period of biotreatment with 12 cycles of biotreatment yielding a maximum stiffness of 32 KN/mm and maximum uniaxial compressive strength of 9.3 MPa. The strength evolution behavior demonstrated that the macroscopic failure behavior of mylonite coal evolves from plastic failure to brittle failure as the increase of bio-treatments. The results from XRD indicated that the generated CaCO3 crystals mainly occurs in the form of calcite and vaterite. Imaging by SEM further indicated the cementation process for CaCO3. The generated CaCO3 precipitation first occurs on random spots on the particle surfaces, and then occupies the interstitial space until particle-particle bonds are generated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available