4.6 Article

Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling

Journal

GENE
Volume 737, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2020.144411

Keywords

Rian miR-144-3p; GATA3; I/R injury; Reciprocal suppress

Ask authors/readers for more resources

Long non-coding RNAs (lncRNAs) have been identified in cerebral ischemia-reperfusion (I/R) injury nowadays. Herein, we uncovered the function and underlying mechanism of the lncRNA Rian in cerebral I/R injury. The oxygen-glucose deprivation model in N2a cells was offered to mimic cerebral I/R injury in vitro. Trypan blue staining, reactive oxygen species (ROS) production, and caspase-3 activity were used to evaluate cell apoptosis. Then, middle cerebral artery occlusion was conducted to evaluate the function of lncRNA Rian in mice. Realtime PCR and western blotting were performed to determine the expression of lncRNA Rian, miR-144-3p, GATA binding protein 3 (GATA3), caspase-3, Bax, and Bcl-2. The results showed that both Rian and GATA3 were downregulated, and miR-144-3p was upregulated in cerebral I/R injury in vitro and in vivo. Overexpression of Rian could inhibit the cell apoptosis induced by oxygen-glucose deprivation. Furthermore, overexpression of Rian distinctly reduced the infarct size, and it also improved the neurological score. Overexpression of Rian could abolish miR-144-3p-mediated I/R injury in vitro and in vivo. Besides, GATA3 was the target of miR-144-3p and GATA3 could be regulated co-operatively by miR-144-3p and Rian. Consequently, these findings showed that the Rian/miR-144-3p/GATA3 axis is an essential signaling in cerebral I/R injury. The lncRNA Rian may serve as a potential target for novel treatment in patients with ischemic stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available