4.7 Article

A three-dimensional self-standing Mo2C/nitrogen-doped graphene aerogel: Enhancement hydrogen production from landfill leachate wastewater in MFCs-AEC coupled system

Journal

ENVIRONMENTAL RESEARCH
Volume 184, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.109283

Keywords

Nitrogen-doped graphene aerogel; Hydrogen evolution reaction; Molybdenum carbide; Self-standing cathode

Funding

  1. National Science Fund for Distinguished Young Scholars [51625801]
  2. Guangdong Innovation Team Project for Colleges and Universities [2016KCXTD023]
  3. Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme

Ask authors/readers for more resources

A hydrothermal-annealing method was adopted to form nitrogen-doped graphene aerogel-supported molybdenum carbide (Mo2C/NGA) materials by using graphene oxide (GO), poly (propylene glycol) bis(2-aminopropyl ether) (D400 for short) and ammonium molybdate as precursors. The annealing temperature and GO/D400 wt ratio played an important role on the materials structure and electrocatalytic activity. When the annealing temperature reached to 800 degrees C, the Mo2C was formed as an active component and improved obviously the hydrogen evolution reaction (HER) activity. After introducing the appropriate amount of D400, the Mo2C/NGA material not only had a firm porous monolithic framework, but also presented an increasing HER activity. Further, the Mo2C/NGA-based microbial fuel cells-ammonia electrolysis cell (MFCs-AEC) coupled system was constructed and operated for higher hydrogen production. The coupled system produced hydrogen of 198 mL g(Mo2C/NGA)(-1) in simulated ammonia-rich wastewater. As using the actual landfill leachate wastewater as substrate, there was 79.2 mL g(Mo2C/NGA)(-1) of hydrogen production. All of these were attributed to the porous structure with an interconnected network and the nitrogen-doped structure of the NGA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Degradation and detoxification mechanisms of organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) during electrochemical oxidation process

Shaoyu Tang, Zhujun Luo, Jianbo Liao, Zhun Liu, Lei Xu, Junfeng Niu

Summary: The electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl) phosphate (TDCPP) using Ti/SnO2-Sb/La-PbO2 as anode was investigated. The degradation mechanisms and toxicity changes of the degradation intermediates were determined. The results showed that the degradation of TDCPP followed pseudo-first-order kinetics, with better performance at higher current density. The free hydroxy radical ( •OH) was proven to play a dominant role in TDCPP oxidation. Five intermediates were identified and further degraded over time. The toxicity of TDCPP and the intermediates significantly reduced, indicating good detoxification efficiency.

CHINESE CHEMICAL LETTERS (2023)

Article Engineering, Environmental

Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction

Yangyuan Ji, Youn Jeong Choi, Yuhang Fang, Hoang Son Pham, Alliyan Tan Nou, Linda S. Lee, Junfeng Niu, David M. Warsinger

Summary: Due to the inability of widely used removal processes to destroy PFAS, this study applies an electric field in a crossflow membrane system to assess the performance of PFOA rejection, water flux, and energy consumption. The electric field-assisted nanofiltration design achieved a high PFOA rejection rate of 97% and a water flux of 68.4 L/m2 hr, requiring low electrical energy consumption of 7.31 × 10-5 kWh/m3/order.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Chemical

Rapid photocatalytic degradation of tetrabromobisphenol A using synergistic p-n/Z-scheme dual heterojunction of black phosphorus nanosheets/FeSe2/g-C3N4

Cong Liu, Shuo Sun, Mingchuan Yu, Yufei Zhou, Xiaoxia Zhang, Junfeng Niu

Summary: A p-n/Z-scheme dual heterojunction photocatalyst (BFC) was designed and prepared by introducing black phosphorus nanosheets and FeSe2 into porous g-C3N4 to improve its photocatalytic activity. BFC achieved 100% TBBPA degradation efficiency in 40 min and 22.6% debromination efficiency in 60 min under visible light irradiation.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Environmental Sciences

Degradation performance and potential protection mechanism of the anammox consortia in response to capecitabine

Xiaojing Wang, Duxiong Chen, Yufei Zhou, Mingchuan Yu, Junfeng Niu

Summary: The potential risks of continuous release of anti-cancer drugs like capecitabine have gained significant attention. Understanding the removal performance and protective mechanism against emerging contaminants is crucial for wastewater treatment using anammox techniques. Capecitabine had a slight effect on nitrogen removal performance in activity experiments. Through bio-adsorption and biodegradation, up to 64-70% of capecitabine can be effectively removed. However, a concentration of 10 mg/L significantly decreased the removal efficiency of capecitabine and total nitrogen in repeated load scenarios. Metabolomic and metagenomic analyses provided insights into the biodegradation pathway and protective mechanisms of the system, including the increased presence of heterotrophic bacteria and secretion of sialic acid.

CHEMOSPHERE (2023)

Article Environmental Sciences

Ecotoxicity and resistance genes induction changing of antibiotic tetracycline degradation products dominated by differential free radicals

Heshan Zheng, Yitong Ji, Shuo Li, Wei Li, Junfeng Niu

Summary: Studying the ecological risks of antibiotics and their degradation products is important for water environment security and AOPs development. This study found that tetracycline (TC) exhibited differential degradation pathways and resulted in differential growth inhibition trends on determined strains under different free radicals. Microcosm experiments combined with metagenomics revealed significant changes in the microbial community and TC resistance genes in water environment. Additionally, the study investigated the richness of genes related to oxidative stress and their effect on reactive oxygen species production and SOS response caused by TC and its intermediates.

ENVIRONMENTAL RESEARCH (2023)

Article Chemistry, Physical

Revealing the activity origin of ultrathin nickel metal-organic framework nanosheet catalysts for selective electrochemical nitrate reduction to ammonia: Experimental and density functional theory investigations

Fan Pan, Jianjun Zhou, Tian Wang, Yunqing Zhu, Hongrui Ma, Junfeng Niu, Chuanyi Wang

Summary: This study develops an efficient catalyst for the electrochemical nitrate reduction reaction, achieving high nitrate conversion, ammonia selectivity, and reaction rate. The structure-performance relationship of the catalyst is revealed, and the reaction mechanism of nitrate-to-ammonia transformation is explored.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2023)

Article Environmental Sciences

Ultrasound-enhanced Magneli phase Ti4O7 anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF)

Yunlong Luo, Ashkan Khoshyan, Md Al Amin, Annette Nolan, Fiona Robinson, Jim Fenstermacher, Junfeng Niu, Mallavarapu Megharaj, Ravi Naidu, Cheng Fang

Summary: In this study, a hybrid system combining electrochemical treatment with ultrasound irradiation is proposed for enhanced degradation of PFAS. The electrochemical process using a titanium suboxide anode effectively removes PFOA, and when combined with ultrasound irradiation, achieves 100% PFOA removal and 63.5% defluorination, indicating synergistic removal/oxidation effects.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Correction Engineering, Environmental

Electrocatalytic Oxidation Processes for Treatment of Halogenated Organic Pollutants in Aqueous Solution: A Critical Review (vol 2, pg 1756, 2022)

Qiongfang Zhuo, Jincheng Lu, Junfeng Niu, John C. Crittenden, Gang Yu, Shoushan Wang, Bo Yang, Zefang Chen

ACS ES&T ENGINEERING (2023)

Article Environmental Sciences

Raman imaging to identify microplastics released from toothbrushes: algorithms and particle analysis

Cheng Fang, Saianand Gopalan, Xian Zhang, Lei Xu, Junfeng Niu, Ravi Naidu

Summary: This study examines the release of microplastics from toothbrushes using Raman imaging technique and algorithms. It confirms the release of microplastics in daily lives and provides an imaging analysis approach to identify the chemical elements of microplastics.

ENVIRONMENTAL POLLUTION (2023)

Article Environmental Sciences

Metabolic insights into the interaction between nitrogen removal and 4-chlorophenol reduction of anammox consortia

Xiaojing Wang, Yu Zou, Yameng Wang, Junfeng Niu, Haibo Li

Summary: This study demonstrates that the addition of 4-chlorophenol significantly inhibits the ammonia-nitrogen removal efficiency and the activity of anammox process at different concentrations. Metagenomic analysis reveals a decrease in the abundance of KEGG pathways associated with carbohydrate and amino acid metabolism with increasing 4-chlorophenol concentration. The presence of 4-chlorophenol enhances the decomposition of extracellular polymeric substances (EPS) and bacterial debris, and partially converts 4-chlorophenol to p-nitrophenol.

ENVIRONMENTAL RESEARCH (2023)

Article Engineering, Environmental

2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of Sulfamethazine via supramolecular probe

Yindian Wang, Zhijuan Niu, Chengcheng Xu, Minghui Zhan, Kwangnak Koh, Junfeng Niu, Hongxia Chen

Summary: A real-time and label-free surface plasmon resonance (SPR) sensor was developed using a two-dimensional metal-organic framework as an SPR sensitizer to accurately monitor sulfamethazine (SMZ) in the environment. The sensor utilizes host-guest recognition to specifically capture SMZ from other similar antibiotics.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Chemistry, Physical

Influence of MnOx deposition on TiO2 nanotube arrays for electrooxidation

Kaihang Zhang, Yuanzheng Zhang, Su Liu, Xin Tong, Junfeng Niu, Dong Wang, Junchen Yan, Zhaoyang Xiong, John Crittenden

Summary: In this study, a MnOx-TiO2 NTAs anode was prepared by compositing narrow bandgap manganese oxide (MnOx) with TiO2 nanotube arrays (TiO2 NTAs). Electrochemical characterizations revealed that increasing the composited concentration of MnOx improved the conductivity and reduced the oxygen evolution potential, thus enhancing the electrochemical activity of the MnOx-TiO2 NTAs anode. Moreover, the optimal degradation rate of benzoic acid (BA) was achieved by adjusting the MnOx concentration and degradation voltage. These quantitative results are of great significance for the design and application of high-performance materials for electrochemical advanced oxidation processes (EAOPs).

GREEN ENERGY & ENVIRONMENT (2023)

Article Engineering, Environmental

From celebration to contamination: Analysing microplastics released by burst balloons

Yunlong Luo, Olalekan Awoyemi, Siyuan Liu, Junfeng Niu, Ravi Naidu, Cheng Fang

Summary: This study investigates the release of microplastic particles from ruptured air balloons using Raman imaging. It is found that each balloon explosion can potentially release tens-to-thousands of microplastics. The recommendation of using terrain mapping to scan the sample surface to avoid misleading images is also provided.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples

Cheng Fang, Olalekan Simon Awoyemi, Gopalan Saianand, Lei Xu, Junfeng Niu, Ravi Naidu

Summary: This study successfully identified and visualized microplastic fibers in indoor air using Raman imaging technology, providing statistical information. Air filters can serve as good indicators to monitor microplastic contamination in indoor air quality.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Chemistry, Physical

High-Yield Electrosynthesis of Formic Acid from CO2 Reduction on Single-Bismuth Catalyst Loaded on N-Doped Hollow Carbon Nanospheress

Jihan Zhang, Kun Zhao, Yueming Ma, Weirui Chen, Xinglei Shi, Chenghua Sun, Qianyu Zhang, Junfeng Niu

Summary: This study reports a single-atom bismuth loaded catalyst that enhances the electrocatalytic activity and selectivity of formic acid synthesis from CO2 reduction. The obtained catalyst exhibits significantly boosted production rate and Faradaic efficiency compared to other catalysts reported in the literature, owing to the electronic structure modulation to the bismuth center via threefold coordinated nitrogen ligands.

SMALL STRUCTURES (2023)

Article Environmental Sciences

Metals recovery from polymetallic sulfide tailings by bioleaching functional bacteria isolated with the improved 9K agar: Comparison between one-step and two-step processes

Muqiu Hu, Xin Zhao, Jinghan Gu, Lulu Qian, Zhiqing Wang, Yuanyuan Nie, Xiaoyu Han, Long An, Haiqiang Jiang

Summary: Due to its simple process, environmental friendliness, and low operating costs, biometallurgy has become a popular technology for metals recovering from low-grade ores and tailings. An optimized agar was used to isolate and grow functional bacteria, resulting in the successful isolation of six functional stains. These strains were further tested for their ability to leach metals from polymetallic sulfide tailings, with significant improvements observed when the strains were mixed together. The selection of leaching process should be based on tailings composition and target metals.

ENVIRONMENTAL RESEARCH (2024)

Review Environmental Sciences

Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health

Saqib Hassan, Aswin Thacharodi, Anshu Priya, R. Meenatchi, Thanushree A. Hegde, R. Thangamani, Ht Nguyen, Arivalagan Pugazhendhi

Summary: An Endocrine Disrupting Chemical (EDC) is a compound that disrupts the function of the endocrine system and is found in the environment. EDCs, such as Bisphenol A and pesticides, have been shown to have negative effects on the female reproductive system. Understanding the relationship between EDCs and women's health is crucial for developing strategies to protect reproductive health and informing public policy decisions.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Long-term effects of thiosulfate on the competition between sulfur-mediated bacteria and glycogen accumulating organisms in sulfate-rich carbon-deficient wastewater

Lichang Zhou, Zhaoling Li, Boyi Cheng, Jinqi Jiang, Xinqi Bi, Zongping Wang, Guanghao Chen, Gang Guo

Summary: Thiosulfate can promote sulfur-mediated bacterial activity, inhibit glycogen accumulating organisms, and enhance denitrification efficiency. After the carbon source is reduced, the competitive ability of glycogen accumulating organisms increases, resulting in reduced sulfate reduction.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Air pollution and age-dependent changes in emotional behavior across early adolescence in the US

Claire E. Campbell, Devyn L. Cotter, Katherine L. Bottenhorn, Elisabeth Burnor, Hedyeh Ahmadi, W. James Gauderman, Carlos Cardenas-Iniguez, Daniel Hackman, Rob McConnell, Kiros Berhane, Joel Schwartz, Jiu-Chiuan Chen, Megan M. Herting

Summary: Recent studies have found a connection between air pollution and increased risk for behavioral problems during development. However, more longitudinal studies are needed to investigate how exposure during the transition to adolescence may affect emotional behaviors.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Urban green, blue spaces and their joint effect are associated with lower risk of emotional and behavior problem in children and adolescents, a large population-based study in Guangzhou, China

Jing-hong Liang, Ru-yu Yang, Mei-ling Liu, Ying-qi Pu, Wen-wen Bao, Yu Zhao, Li-xin Hu, Yu-shan Zhang, Shan Huang, Nan Jiang, Xue-ya Pu, Shao-yi Huang, Guang-hui Dong, Ya-jun Chen

Summary: This study examines the association between urban Green and blue spaces (GBS) exposure and Emotion and behavior problems (EBP) in youth populations. The findings suggest that higher exposure to GBS, particularly green spaces (GS) and blue spaces (BS), is associated with a decrease in the risk of developing total difficulties in young individuals. The joint effect of GS and BS may also contribute to the decrease in EBPs.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Neurodevelopmental consequences of gestational exposure to particulate matter 10: Ultrasonic vocalizations and gene expression analysis using a bayesian approach

Diego Ruiz-Sobremazas, Mario Ruiz Coca, Miguel Morales-Navas, Rocio Rodulfo-Cardenas, Caridad Lopez-Granero, Maria Teresa Colomina, Cristian Perez-Fernandez, Fernando Sanchez-Santed

Summary: Air pollution is associated with a range of health issues and gestational exposure to environmental pollutants may be linked to neurodevelopmental disorders. This study investigated the effects of oral gestational exposure to particulate matter (PM) on ultrasonic vocalizations (USV). The findings suggest that this exposure may lead to social deficits and abnormal gene expression related to neurotransmitter systems. Further research is needed to better understand the effects of air pollution on neurodevelopmental disorders and the neurotransmission systems involved.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Enhancement of methane production by electrohydrolysis pretreatment for anaerobic digestion of OFMSW

Yagmur Kabakci, Sadiye Kosar, Ozgur Dogan, Fehmi Gorkem Uctug, Osman Atilla Arikan

Summary: This study investigated the effect of electrohydrolysis pretreatment on municipal solid waste. The results showed that applying electrohydrolysis pretreatment increased methane production and reduced the time required for hydrolysis, suggesting it is a promising method to improve anaerobic digestion efficiency.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Quantifying the contribution of industrial zones to urban heat islands: Relevance and direct impact

Chuanwu Zhao, Yaozhong Pan, Hanyi Wu, Yu Zhu

Summary: This study analyzed the impact of industrial zones on urban heat islands using remote sensing images and a novel spectral index. The research found that the contraction or expansion of industrial zones has a significant effect on land surface temperature. The results are valuable for environmental assessment and fine management of industrial cities.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

New insights into syntrophic ethanol oxidation: Effects of operational modes and solids retention times

Bang Du, Zhongzhong Wang, Piet N. L. Lens, Xinmin Zhan, Guangxue Wu

Summary: This study investigated the performance, syntrophic relationships, microbial communities, and metabolic pathways of ethanol-fed reactors with different operational modes and solids retention times. The results showed that different microorganisms were enriched under different SRT conditions, and syntrophic bacteria related to methane production could be enriched under low SRT conditions.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Conversion of seaweed waste to biochar for the removal of heavy metal ions from aqueous solution: A sustainable method to address eutrophication problem in water bodies

Gokulan Ravindiran, Sivarethinamohan Rajamanickam, Muralikrishnan Ramalingam, Gasim Hayder, Balamurugan Karupaiya Sathaiah, Madhava Krishna Reddy Gaddam, Senthil Kumar Muniasamy, Priya Arunkumar

Summary: The present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The biochar produced by the marine algae Ulva reticulata was used to remove chromium, nickel, and zinc from aqueous solutions. The study examined the adsorbents' properties and stability using SEM/EDX, FTIR, and XRD. The results showed that the biochar had high removal efficiency for the toxic metals, and the packed bed column effectively removed the heavy metal ions. The Thomas and Adams-Bohart models were found to best fit the regression values, and desorption studies were conducted to understand the sorption and elution processes.

ENVIRONMENTAL RESEARCH (2024)

Review Environmental Sciences

Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes

Vignesh Vinayagam, Kavitha Nagarasampatti Palani, Sudha Ganesh, Siddharth Rajesh, Vedha Varshini Akula, Ramapriyan Avoodaiappan, Omkar Singh Kushwaha, Arivalagan Pugazhendhi

Summary: The presence of pollutants in water contributes to global pollution and poses significant threats to humans and wildlife. Finding effective wastewater treatment techniques is crucial for reducing pollutant accumulation in the environment. This paper highlights recent advances in the electrochemical advanced oxidation method and other processes for treating pharmaceuticals, dyes, and pesticide-polluted effluents.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Promotion of phosphate release from humic acid-iron hydroxide coprecipitates in the presence of citric acid

M. M. M. Ahmed, Kai-Yue Chen, Fang-Yu Tsao, Yi-Cheng Hsieh, Yu-Ting Liu, Min Tzou

Summary: This study investigated the sorption of citric acid onto humic acid-iron hydr(o)xide coprecipitate (HAFHCP) and the reciprocal effects of citric acid and P sorption on HAFHCP. The results showed that citric acid could increase P availability and have an impact on P sorption.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

A remote sensing-based strategy for mapping potentially toxic elements of soils: Temporal-spatial-spectral covariates combined with random forest

Xibo Xu, Zeqiang Wang, Xiaoning Song, Wenjie Zhan, Shuting Yang

Summary: The selection of predictor variables is crucial in building a digital mapping model for potentially toxic elements (PTEs) in soil. Traditionally, spatial and spectral parameters have been used as predictor variables, but the temporal dimension is often overlooked. This study demonstrates the value of incorporating temporal indices in the model, leading to significant performance improvements. The temporal-spatial-spectral covariate combinations used in a random forest (RF) algorithm achieve satisfactory mapping accuracy and outperform other methods.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Heteroatom-modulated NiCo2O4 apparent energy activation of PMS for tetracycline removal: Mechanism and toxicity analysis

Yan Pei, Xun Liu, Mengbo Cao, Zijun Wang, Hongbing Yang

Summary: Heteroatom doping can reconfigure the electronic structure of heterogeneous catalysts, leading to the development of advanced oxidation water purification materials with superior performance and stability. In this study, a series of catalysts with different elemental doping were prepared using a simple and environmentally friendly method. The S-doped NiCo2O4 catalyst showed excellent catalytic performance for the removal of Tetracycline, with significantly increased kinetic constant and high oxidation and mineralization efficiency in a wide pH range. The degradation process was dominated by non-radical oxidation pathway after S doping, and the overall process moved towards low toxicity.

ENVIRONMENTAL RESEARCH (2024)

Article Environmental Sciences

Biodegradation of naphthalene - Ecofriendly approach for soil pollution mitigation

Srivalli Thimmarayan, Harshavardhan Mohan, Gaddapara Manasa, Karthi Natesan, Shanmugam Mahendran, Pavithra Muthukumar Sathya, Byung-Taek Oh, R. Ravi Kumar, Rangasamy Sigamani Gandhimathi, Arul Jayaprakash, Kamala-Kannan Seralathan

Summary: This study investigated the bacterial degradation of naphthalene (NPT) isolated from crude oil-contaminated soil. Bacillus sp. GN 3.4, a potential bacteria for NPT biodegradation, was isolated and the optimal conditions for NPT degradation were determined. The study suggests that Bacillus sp. GN 3.4 could potentially aid in bioremediation by eliminating NPT from the soil.

ENVIRONMENTAL RESEARCH (2024)