4.7 Article

Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China

Journal

ENVIRONMENTAL RESEARCH
Volume 183, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.109141

Keywords

Volatile organic compounds; Pollution characteristic; Source appointment; PTR-ToF-MS; Ozone formation potentials

Funding

  1. Local Innovative and Research Team Project of Guangdong Pearl River Talents Program [2017BT01Z032]
  2. National Natural Science Foundation of China [41731279, 41425015]
  3. Innovation Team Project of Guangdong Provincial Department of Education [2017KCXTD012]
  4. Guangdong Special Branch Plan of Science and Technology for Innovation leading scientists [2016TX03Z094]
  5. Guangdong Provincial Key Research and Development Program [2019B110206002]

Ask authors/readers for more resources

Background: Ozone is currently one of the most important air pollutants. Volatile organic compounds (VOCs) can easily react with atmospheric radicals to form ozone. In-field measurement of VOCs may help in estimating the local VOC photochemical pollution level. Method: This study examined the spatial and temporal distribution characteristics of VOCs during winter at three typical sites of varying classification in China; industrial (Guangzhou Economic and Technological Development District (GETDD)), urban (Guangzhou higher education mega center (HEMC)), and rural (Pingyuan county (PYC)), using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Results: The concentrations of total VOCs (TVOCs) at the GETDD, HEMC and PYC sites were 352.5, 129.2 and 75.1 ppb, respectively. The dominant category of VOCs is nitrogen-containing VOCs (NVOCs, accounting for 43.3% of TVOCs) at GETDD, of which C4H11N (m/z(+) = 74.10, butyl amine) was the predominant chemical species (80.5%). In contrast, oxygenated VOCs (OVOCs) were the most abundant at HEMC and PYC, accounting for 60.2% and 64.1% of the total VOCs, respectively; here, CH4O (m/z(+) = 33.026, methanol) was the major compound, accounting for 40.5% of the VOCs at HEMC and 50.9% at PYC. The ratios of toluene to benzene (T/B) were calculated for different measured sites, as the ratios of T/B can reveal source resolution of aromatic VOCs. The average contributions to total ozone formation potentials (OFP) of the total measured VOCs in each area were 604.9, 315.9 and 111.7 mu g/m(3) at GETDD, HEMC and PYC, respectively; the highest OFP contributors of the identified VOCs were aliphatic hydrocarbons (AlHs) at GETDD, aromatic hydrocarbons (AHs) at HEMC, and OVOCs at PYC. Conclusions: OFP assessment indicated that the photochemical pollution caused by VOCs at GETDD was serious, and was also significant in the HEMC region. The dominant VOC OFP groups (AlHs and AHs) should be prioritized for control, in order to help reduce these effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available