4.7 Article

Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract

Journal

ENVIRONMENTAL POLLUTION
Volume 259, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.113917

Keywords

SnO2; Polyaniline; Pesticide degradation; Microwave irradiation; Radical scavenging

Ask authors/readers for more resources

The present work reports microwave-assisted synthesis of SnO2 nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO2 were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV-vis DRS spectra of PANI/SnO2 revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO2, PANI, PANI/SnO2 nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO2 was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO2-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO2-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of center dot OH, center dot O-2(-). radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO2-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available