4.7 Review

Genome maintenance in the context of 4D chromatin condensation

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 73, Issue 16, Pages 3137-3150

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-016-2221-2

Keywords

Chromatin architecture; Genome stability; Epigenome; Cell cycle; Cancer

Funding

  1. NIH [R01GM100478]

Ask authors/readers for more resources

The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available