4.7 Article

Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 194, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.110374

Keywords

Salt stress; Limonium sinense; Root exudates; Chemotaxis; Bacillus fiexus

Funding

  1. National Natural Science Foundation of China [31370062]
  2. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [17KJA180004]
  3. Promoting Science and Technology Innovation Project of Xuzhou City [KC18142]
  4. Qing Lan Project of Jiangsu Province

Ask authors/readers for more resources

Halophytes play an important role in the bioremediation of saline soils. Increased evidence has revealed that plant growth-promoting rhizobacteria (PGPR) have colonized the halophytic rhizosphere, and they have evolved the capacity to reduce salt stress damage to the host. However, the mechanism by which halophytes attract and recruit beneficial PGPR has rarely been reported. This study reports the interaction between the halophyte Limonium sinense and its rhizosphere PGPR strain Bacillus flexus KLBMP 4941, as well as the mechanism by which KLBMP 4941 promotes host plant growth under salt stress. After salt stress treatment, we collected the root exudates (REs) of L. sinense and found that the REs could promote the growth and chemotaxis of the bacterium KLBMP 4941. In addition, the components of the REs under salt stress were analyzed, and some organic acids (2-methylbutyric acid, stearic acid, palmitic acid, palmitoleic acid, and oleic acid) were detected as the major components. Further assessment showed that each of these components had positive effects on the growth, motility, chemotaxis, and root colonization of strain KLBMP 4941. Further pot experiments revealed the potential PGP mechanisms induced by strain KLBMP 4941 on the host plant under salt stress. Inoculation with KLBMP 4941 promoted the accumulation of chlorophyll to enhance photosynthesis, increased osmotic regulator contents, enhanced flavonoid and antioxidant enzymes, and regulated Na+/K+ homeostasis to help the host ameliorate salinity stress damage. Our findings indicate that the halophyte L. sinense can attract and recruit beneficial rhizosphere bacteria by REs under salt stress, and the recruited B. flexus KLBMP 4941 elicited PGP effects under salinity stress through complex plant physiological regulatory mechanisms. This study provides a foundation for the enhancement of the rhizosphere colonization ability of the PGP strain KLBMP 4941, which shows potential applications in phytoremediation of saline soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available