4.7 Article

Endothelial Overexpression of Metallothionein Prevents Diabetes-Induced Impairment in Ischemia Angiogenesis Through Preservation of HIF-1α/SDF-1/VEGF Signaling in Endothelial Progenitor Cells

Journal

DIABETES
Volume 69, Issue 8, Pages 1779-1792

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db19-0829

Keywords

-

Funding

  1. American Diabetes Association [1-11-BS-017, 1-15-BS-018, 113-JF-53]
  2. National Institute of General Medical Sciences [GM-103492]
  3. National Natural Science Foundation of China [81770305, 81873466]
  4. National Key R&D Program of China [2017YFA0506000]
  5. Zhejiang Provincial Natural Science Foundation of China [LY16H020010, LY14H070007]
  6. Chengdu Medical College [CYTD17-01]

Ask authors/readers for more resources

Diabetes-induced oxidative stress is one of the major contributors to dysfunction of endothelial progenitor cells (EPCs) and impaired endothelial regeneration. Thus, we tested whether increasing antioxidant protein metallothionein (MT) in EPCs promotes angiogenesis in a hind limb ischemia (HLI) model in endothelial MT transgenic (JTMT) mice with high-fat diet- and streptozocin-induced diabetes. Compared with littermate wild-type (WT) diabetic mice, JTMT diabetic mice had improved blood flow recovery and angiogenesis after HLI. Similarly, transplantation of JTMT bone marrow-derived mononuclear cells (BM-MNCs) stimulated greater blood flow recovery indb/dbmice with HLI than did WT BM-MNCs. The improved recovery was associated with augmented EPC mobilization and angiogenic function. Further, cultured EPCs from patients with diabetes exhibited decreased MT expression, increased cell apoptosis, and impaired tube formation, while cultured JTMT EPCs had enhanced cell survival, migration, and tube formation in hypoxic/hyperglycemic conditions compared with WT EPCs. Mechanistically, MT overexpression enhanced hypoxia-inducible factor 1 alpha (HIF-1 alpha), stromal cell-derived factor (SDF-1), and vascular endothelial growth factor (VEGF) expression and reduced oxidative stress in ischemic tissues. MT's pro-EPC effects were abrogated by siRNA knockdown of HIF-1 alpha without affecting its antioxidant action. These results indicate that endothelial MT overexpression is sufficient to protect against diabetes-induced impairment of angiogenesis by promoting EPC function, most likely through upregulation of HIF-1 alpha/SDF-1/VEGF signaling and reducing oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available