4.7 Article

Engineering thermally and electrically conductive biodegradable polymer nanocomposites

Journal

COMPOSITES PART B-ENGINEERING
Volume 189, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2020.107905

Keywords

Polymer nanocomposites; Electrical conductivity; Thermal conductivity; Graphene nano-platelets; Work of adhesion; Dispersing preference

Funding

  1. National Science Foundation [1344267]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1344267] Funding Source: National Science Foundation

Ask authors/readers for more resources

There is an urgent demand for producing biodegradable polymer based composites with good thermal and/or electrical conductivity to mitigate the plastic pollution introduced by electronic waste. Here, we have designed and engineered a mechanically strong, melt processable, biodegradable polymer based nanocomposite with excellent thermal and electrical conductivity using filler dispersion principle and the work of adhesion (Wa) as guides. In the design, graphene nano-platelets (GNPs) were dispersed into a highly ductile biodegradable polymer - poly (butylene adipate-co-butylene terephthalate) (PBAT). Blending with another biodegradable polymer, poly (lactic acid) (PLA) that has low affinity to GNPs, confined the dispersion of GNPs within PBAT matrix, thereby facilitating the formation of a percolated network. As a result, high thermal conductivity (3:15 W=m.K) and electrical conductivity (338 S=m) were achieved for the nanocomposite at 40 wt% of GNPs loading, and the mechanical performance remained strong even at such filler loading due to the strong interaction between GNPs and PBAT. This study provides a new strategy for effectively producing high thermally and/or electrically conductive polymer nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available