4.3 Article

Limited fascicle shortening and fascicle rotation may be associated with impaired voluntary force-generating capacity in pennate muscles of chronic stroke survivors

Journal

CLINICAL BIOMECHANICS
Volume 75, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.clinbiomech.2020.105007

Keywords

Fascicle shortening; Fascicle rotation; Stroke; Muscle weakness; Muscle mechanics

Funding

  1. National Institute on Disability, Independent Living, and Rehabilitation Research [90SFGE0005]
  2. Davee Foundation Stroke Research Seed Grant initiative
  3. Northwestern University Department of Neurology, Division of Stroke and Neurocritical Care
  4. National Institutes of Health [R01HD089952, K12HD073945]
  5. NIDILRR [1004357, 90SFGE0005] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Background: Muscle weakness is one of the most common motor impairments after stroke. A variety of progressive muscular changes are reported in chronic stroke survivors, and it is now feasible to consider these changes as an added source of weakness. However, the net contributions of such muscular changes towards muscle weakness have not been fully quantified. Methods: Accordingly, this study aims: (1) to compare muscle architecture of the human medial gastrocnemius between paretic and non-paretic sides in seven chronic hemispheric stroke survivors under passive conditions; (2) to characterize fascicle behavior (i.e., fascicle shortening and fascicle rotation) of the muscle during voluntary isometric contractions; and (3) to assess potential associations between muscle architectural parameters and muscle weakness. Muscle architecture of the medial gastrocnemius (including fascicle length, fascicle pennation angle, and muscle thickness) was characterized using B-mode ultrasonography, and fascicle behavior was then quantified as a function of isometric plantarflexion torque normalized to body mass. Findings: Our experimental results showed that under passive conditions, there was a significant difference in fascicle length and muscle thickness between paretic and non-paretic muscles, but no difference in resting fascicle pennation angle. However, during isometric contraction, both fascicle shortening and fascicle rotation on the paretic side were significantly decreased, compared to the non-paretic side. Moreover, the relative (i.e., paretic/non-paretic) fascicle rotation-shortening ratio (i.e., fascicle rotation per fascicle shortening) was strongly correlated with the relative maximum voluntary isometric plantarflexion torque. Interpretation: This association implies that such fascicle changes could impair the force-generating capacity of the muscle in chronic stroke survivors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available