4.7 Article

Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations

Journal

CHEMOSPHERE
Volume 246, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125778

Keywords

Carbon nanotubes; Antibiotics; Adsorptive affinity; Density functional theory; Molecular structure; Activity relationship

Funding

  1. National Natural Science Foundation of China [51878427]

Ask authors/readers for more resources

In order to investigate the adsorption behaviors of sulfonamides onto hydroxylated multi - walled carbon nanotubes (CNTs) with a porous structure and large specific surface area, six typical sulfonamides including sulfanilamide (SAM), sulfamerazine (SMR), sulfadimethoxine (SMX), sulfadiazine (SDZ), sulfamethazine (SMT) and sulfametoxydiazine (SMD) were selected to be adsorbed respectively on CNTs, and in the same time the structural parameters of the six sulfonamides molecules were calculated according to the density functional theory (DFT). Based upon above mentioned experiments and the structural parameters, the quantitative correlation between the structural parameters of sulfonamides molecules and their adsorption affinity (e.g. adsorption capacity and adsorption rate constant) onto CNTs was established, respectively. The adsorption data of sulfonamides fitted well with the pseudo - second - order kinetic model and the Langmuir isotherm model. The order of both pseudo - second - order kinetic constant and maximum adsorption capacity of the six sulfonamides were SAM < SMR < SMX < SDZ < SMT < SMD. The frontier molecular orbital energy (E-HOMO) and dipole moment (mu) could be used as indicators for the adsorption affinity of sulfonamides onto CNTs. Accordingly, the possible adsorption mechanism was proposed. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available