4.7 Article

Developmental circulatory failure caused by metabolites of organophosphorus flame retardants in zebrafish, Danio rerio

Journal

CHEMOSPHERE
Volume 246, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125738

Keywords

Organophosphate triesters; Flame retardants; Metabolites; Zebrafish; Circulatory failure

Funding

  1. Japan Society for the Promotion of Science [15H05334, 19H04275]
  2. Grants-in-Aid for Scientific Research [15H05334, 19H04275] Funding Source: KAKEN

Ask authors/readers for more resources

Organophosphate triesters are used worldwide as additives in flame retardants and plasticizer as a replacement of polybrominated diphenyl ethers. Increasing evidence on human exposure to and environmental contamination with organophosphorus flame retardants (OPFRs) requires an adequate toxicity assessment for this class of chemicals. While developmental toxicity of several OPFRs has been reported, developmental effects of OPFR metabolites have still to be understood. The present study aimed at characterizing developmental effects of OPFR metabolites using zebrafish embryos (Danio rerio). Triphenyl phosphate (TPHP) and two of its metabolites, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate, were most potent for inducing pericardial edema and reduction in blood flow in trunk vessels. Other TPHP metabolites, such as diphenyl phosphate and 4-hydroxylphenyl phenyl phosphate, showed no substantial increase in circulatory failure at concentrations up to 30 mu M. Tris (1,3-dichloro-2-propyl) phosphate showed circulatory failure at 30 mu M, but its metabolite bis(1,3-dichloro-2-propyl) phosphate did not. Neither tris(2-chloroethyl) phosphate nor its metabolite bis(2-chloroethyl) phosphate, induced circulatory failure. The circulatory failure appeared to be enhanced with the increase in the octanol-water partition coefficients of OPFRs and their metabolites, suggesting that developmental circulatory failure posed by these chemicals could be estimated by their bioaccumulative potential. The present study demonstrated developmental circulatory failure of hydroxylated TPHP metabolites, which was almost equipotent to TPHP. Diester OPFR metabolites showed no major developmental toxicity at the concentrations used in this study. The current results establish the foundation for further understanding the similarities and differences in the toxic mechanisms between OPFRs and their metabolites. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available