4.7 Article

Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area

Journal

CHEMOSPHERE
Volume 246, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.125829

Keywords

E-waste; Lead; Cadmium; DNA methylations; Hearing loss; Preschool children

Funding

  1. Natural Science Foundation of China [21577084]
  2. Natural Science Foundation of Guangdong Province of China [2015A030313435]
  3. Department of Education of Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases [2016046]

Ask authors/readers for more resources

Experimental studies have uncovered chemical exposure-induced ototoxicity, but population-based hearing risk assessment especially for early-life exposure to heavy metals and relevant biological mechanism remains unclear. We aimed to measure lead (Pb) and cadmium (Cd) levels, blood DNA methylations of Rb1, CASP8 and MeCP2 and hearing in 116 preschool children 3- to 7-years of age from an e-waste and a reference area, and to evaluate the association of exposures with hearing loss potentially affected by epigenetic modifications. A higher median Pb level but not Cd was found in the exposed group than the reference group. Average hearing thresholds in either ear of the exposed children were higher. Higher promoter methylation levels at cg02978827 and position +14, and lower at position +4 of Rb1 were found in the exposed group. Pb was positively correlated with chewing pencil habit while negatively correlated with washing hands before dinner. Slightly negative trends of promoter methylations in Rb1 and CASP8, while a strong positive trend of MeCP2 promoter methylation, were found along with increasing Pb and Cd levels. Logistic analyses showed the adjusted OR of Pb for hearing loss in the left ear and both ears was 1.46 (95% CI: 1.12, 1.91) and 1.40 (95% CI: 1.06,1.84), respectively. Our results show an elevated Pb level, altered promoter DNA methylations and hearing ability in children of e-waste areas, suggesting that epigenetic changes of specific genes involves in the development of the auditory system during early exposure to environmental chemicals. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available