4.5 Article

PASylation Enhances the Stability, Potency, and Plasma Half-Life of Interferon α-2a: A Molecular Dynamics Simulation

Journal

BIOTECHNOLOGY JOURNAL
Volume 15, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201900385

Keywords

interferon alpha-2a; molecular dynamics; PASylation; plasma half-life; protein therapeutics

Ask authors/readers for more resources

In this study, the effectiveness of PASylation in enhancing the potency and plasma half-life of pharmaceutical proteins has been accredited as an alternative technique to the conventional methods such as PEGylation. Proline, alanine, and serine (PAS) chain has shown some advantages including biodegradability improvement and plasma half-life enhancement while lacking immunogenicity or toxicity. Although some experimental studies have been performed to find the mechanism behind PASylation, the detailed mechanism of PAS effects on the pharmaceutical proteins has remained obscure, especially at the molecular level. In this study, the interaction of interferon alpha-2a (IFN) and PAS chain is investigated using molecular dynamics simulation method. Several important parameters including secondary structure, root-mean-square distance, and solvent accessible surface area to investigate the stability, bioavailability, and bioactivity of the PASylated protein are studied. The results demonstrate that IFN conformation is not affected critically through PASylation while it results in improvement of the protein stability and bioactivity. Therefore, PASylation can be considered as a proper biological alternative technique to increase the plasma half-life of the biopharmaceutical proteins through enlarging apparent volume. The proposed simulation represents a computational approach that would provide a basis for the study of PASylated pharmaceutical proteins for different future applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available