4.7 Article

PCL-Based Shape Memory Polymer Semi-IPNs: The Role of Miscibility in Tuning the Degradation Rate

Journal

BIOMACROMOLECULES
Volume 21, Issue 6, Pages 2493-2501

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.0c00454

Keywords

-

Funding

  1. NIH NIDCR [1R01DK09510101A1]
  2. National Science Foundation [DBI-0116835]

Ask authors/readers for more resources

The utility of poly(epsilon-caprolactone) (PCL) as a shape memory polymer (SMP) may be improved by accelerating its degradation. Recently, we have reported novel semi-interpenetrating networks (semi-IPNs) composed of cross-linked PCL diacrylate (PCL-DA) and thermoplastic poly(L-lactic acid) (PLLA) that exhibited SMP behavior, accelerated degradation, and enhanced moduli versus the PCL-DA control. Herein, we systematically varied the thermoplastic component of the PCL-based semi-IPNs, incorporating homo- and copolymers based on lactic acid of different M-n, hydrophilicity, and crystallinity. Specifically, semicrystalline PLLAs of different M(n)s (7.5, 15, 30, and 120 kDa) were explored as the thermoplastics in the semiIPNs. Additionally, to probe crystallinity and hydrophilicity, amorphous (or nearly amorphous) thermoplastics of different hydrophilicities (PDLLA and PLGAs 85:15, 70:30, and 50:50, L-lactide:glycolide mole % ratio) were employed. For all semi-IPNs, the wt % ratio of the cross-linked PCL-DA to thermoplastic was 75:25. The nature of the thermoplastics was linked to semi-IPN miscibility and the trends in accelerated degradation rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available